College of Staten Island

Introduction to Topological Data Analysis

Mikael Vejdemo-Johansson

Outline

- Data has shape
- Homology: linear algebra measures shape
- Persistence: squinting with mathematics
- Cohomology
- Applications

Outline

- Data has shape
- Homology: linear algebra measures shape
- Persistence: squinting with mathematics
- Cohomology
- Applications

Outline

- Data has shape
- Homology: linear algebra measures shape
- Persistence: squinting with mathematics
- Cohomology
- Applications

Note: if the path z is a cycle, endpoints coincide, so $\partial z=0$

Definitions

- A chain is a linear combination of simplices
- A cycle is an element of ker ∂
 Something that looks like a closed path
- A boundary is an element of img ∂
 Something that should look like a closed path
- Homology is the quotient vector space ker ∂ / img ∂
 Essential (non-obvious) cycles

Outline

- Data has shape
- Homology: linear algebra measures shape
- Persistence: squinting with mathematics
- Cohomology
- Applications

3x intersection

3x intersection

3x intersection

What parameter to pick?

Persistent homology

- Look at **all** parameters at once
- Scale-independent
- Compressed data summary

- As the parameter grows, complexes include Inclusions create linear maps on homology
- Track homology classes as the parameter grows Homology is born, lives, and dies.

Persistent homology

• Category theory: Homology is a **functor**. Sequence of spaces $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4$.

Maps to sequence of vector spaces with induced linear maps:

 $H_kX_1 \rightarrow H_kX_2 \rightarrow H_kX_3 \rightarrow H_kX_4.$

 Module theory (over k[t] or over an A_n quiver or...): Sequence of vector spaces and linear maps decomposes into direct sum of interval modules. These are defined by birth index and death index.

Persistent barcodes Persistent diagrams

Persistent barcodes Persistent diagrams

Outline

- Data has shape
- Homology: linear algebra measures shape
- Persistence: squinting with mathematics
- Cohomology
- Applications

Cohomology: dualize everything

- Instead of chains C_n , use cochains C^n =Hom(C_n , \Bbbk)
- Instead of boundary ∂ use coboundary $\delta = \partial^T$

- Cocycles: follow a generalized path invariance:
 f(x,y) + f(y,z) = f(x,z) for any paths x→y, x→z, y→z
- Coboundaries: path invariance follows from a generalized potential function construction:
 f = g(y)-g(x)

1-Cohomology is Circle-valued functions

• Fun fact:

H¹(X; \mathbb{Z}) is bijective with homotopy equivalence classes of functions X \rightarrow S¹

- Construction for $[f] \in H^1(X; \mathbb{Z})$:
 - Send vertices to 0
 - Use f(e) as a wrapping number: wrap e around the circle f(e) times
 - All higher simplices work out bc path invariance

1-Cohomology is Circle-valued functions

• Construction adapts to data:

Pretend [f] is instead from $H^1(X; \mathbb{R})$.

```
arg min<sub>g</sub> | f - \delta g |<sub>2</sub> mod 1.0
is a smooth function C<sub>0</sub> \rightarrow S<sup>1</sup>.
```

 Can compute intrinsic phase variables from geometry of time series

Outline

- Data has shape
- Homology: linear algebra measures shape
- Persistence: squinting with mathematics
- Cohomology
- Applications

