
2019-03-21-Handout

March 16, 2019

In [1]: %pylab inline

from sklearn import datasets, decomposition, feature_extraction

news = datasets.fetch_20newsgroups()

Populating the interactive namespace from numpy and matplotlib

In [2]: news.keys()

Out[2]: dict_keys(['data', 'filenames', 'target_names', 'target', 'DESCR'])

In [3]: print(news["DESCR"])

.. _20newsgroups_dataset:

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on

20 topics split in two subsets: one for training (or development)

and the other one for testing (or for performance evaluation). The split

between the train and test set is based upon a messages posted before

and after a specific date.

This module contains two loaders. The first one,

:func:`sklearn.datasets.fetch_20newsgroups`,

returns a list of the raw texts that can be fed to text feature

extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer`

with custom parameters so as to extract feature vectors.

The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`,

returns ready-to-use features, i.e., it is not necessary to use a feature

extractor.

Data Set Characteristics:

================= ==========

Classes 20

Samples total 18846

1

Dimensionality 1

Features text

================= ==========

Usage

~~~~~

The :func:`sklearn.datasets.fetch_20newsgroups` function is a data

fetching / caching functions that downloads the data archive from

the original `20 newsgroups website`_, extracts the archive contents

in the ``~/scikit_learn_data/20news_home`` folder and calls the

:func:`sklearn.datasets.load_files` on either the training or

testing set folder, or both of them::

>>> from sklearn.datasets import fetch_20newsgroups

>>> newsgroups_train = fetch_20newsgroups(subset='train')

>>> from pprint import pprint

>>> pprint(list(newsgroups_train.target_names))

['alt.atheism',

'comp.graphics',

'comp.os.ms-windows.misc',

'comp.sys.ibm.pc.hardware',

'comp.sys.mac.hardware',

'comp.windows.x',

'misc.forsale',

'rec.autos',

'rec.motorcycles',

'rec.sport.baseball',

'rec.sport.hockey',

'sci.crypt',

'sci.electronics',

'sci.med',

'sci.space',

'soc.religion.christian',

'talk.politics.guns',

'talk.politics.mideast',

'talk.politics.misc',

'talk.religion.misc']

The real data lies in the ``filenames`` and ``target`` attributes. The target

attribute is the integer index of the category::

>>> newsgroups_train.filenames.shape

(11314,)

>>> newsgroups_train.target.shape

(11314,)

>>> newsgroups_train.target[:10]

2



array([ 7, 4, 4, 1, 14, 16, 13, 3, 2, 4])

It is possible to load only a sub-selection of the categories by passing the

list of the categories to load to the

:func:`sklearn.datasets.fetch_20newsgroups` function::

>>> cats = ['alt.atheism', 'sci.space']

>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

>>> list(newsgroups_train.target_names)

['alt.atheism', 'sci.space']

>>> newsgroups_train.filenames.shape

(1073,)

>>> newsgroups_train.target.shape

(1073,)

>>> newsgroups_train.target[:10]

array([0, 1, 1, 1, 0, 1, 1, 0, 0, 0])

Converting text to vectors

~~~~~~~~~~~~~~~~~~~~~~~~~~

In order to feed predictive or clustering models with the text data,

one first need to turn the text into vectors of numerical values suitable

for statistical analysis. This can be achieved with the utilities of the

``sklearn.feature_extraction.text`` as demonstrated in the following

example that extract `TF-IDF`_ vectors of unigram tokens

from a subset of 20news::

>>> from sklearn.feature_extraction.text import TfidfVectorizer

>>> categories = ['alt.atheism', 'talk.religion.misc',

... 'comp.graphics', 'sci.space']

>>> newsgroups_train = fetch_20newsgroups(subset='train',

... categories=categories)

>>> vectorizer = TfidfVectorizer()

>>> vectors = vectorizer.fit_transform(newsgroups_train.data)

>>> vectors.shape

(2034, 34118)

The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero

components by sample in a more than 30000-dimensional space

(less than .5% non-zero features)::

>>> vectors.nnz / float(vectors.shape[0]) # doctest: +ELLIPSIS

159.01327...

:func:`sklearn.datasets.fetch_20newsgroups_vectorized` is a function which

returns ready-to-use token counts features instead of file names.

3

.. _`20 newsgroups website`: http://people.csail.mit.edu/jrennie/20Newsgroups/

.. _`TF-IDF`: https://en.wikipedia.org/wiki/Tf-idf

Filtering text for more realistic training

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is easy for a classifier to overfit on particular things that appear in the

20 Newsgroups data, such as newsgroup headers. Many classifiers achieve very

high F-scores, but their results would not generalize to other documents that

aren't from this window of time.

For example, let's look at the results of a multinomial Naive Bayes classifier,

which is fast to train and achieves a decent F-score::

>>> from sklearn.naive_bayes import MultinomialNB

>>> from sklearn import metrics

>>> newsgroups_test = fetch_20newsgroups(subset='test',

... categories=categories)

>>> vectors_test = vectorizer.transform(newsgroups_test.data)

>>> clf = MultinomialNB(alpha=.01)

>>> clf.fit(vectors, newsgroups_train.target)

MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)

>>> pred = clf.predict(vectors_test)

>>> metrics.f1_score(newsgroups_test.target, pred, average='macro') # doctest: +ELLIPSIS

0.88213...

(The example :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` shuffles

the training and test data, instead of segmenting by time, and in that case

multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious

yet of what's going on inside this classifier?)

Let's take a look at what the most informative features are:

>>> import numpy as np

>>> def show_top10(classifier, vectorizer, categories):

... feature_names = np.asarray(vectorizer.get_feature_names())

... for i, category in enumerate(categories):

... top10 = np.argsort(classifier.coef_[i])[-10:]

... print("%s: %s" % (category, " ".join(feature_names[top10])))

...

>>> show_top10(clf, vectorizer, newsgroups_train.target_names)

alt.atheism: edu it and in you that is of to the

comp.graphics: edu in graphics it is for and of to the

sci.space: edu it that is in and space to of the

talk.religion.misc: not it you in is that and to of the

4



You can now see many things that these features have overfit to:

- Almost every group is distinguished by whether headers such as

``NNTP-Posting-Host:`` and ``Distribution:`` appear more or less often.

- Another significant feature involves whether the sender is affiliated with

a university, as indicated either by their headers or their signature.

- The word "article" is a significant feature, based on how often people quote

previous posts like this: "In article [article ID], [name] <[e-mail address]>

wrote:"

- Other features match the names and e-mail addresses of particular people who

were posting at the time.

With such an abundance of clues that distinguish newsgroups, the classifiers

barely have to identify topics from text at all, and they all perform at the

same high level.

For this reason, the functions that load 20 Newsgroups data provide a

parameter called **remove**, telling it what kinds of information to strip out

of each file. **remove** should be a tuple containing any subset of

``('headers', 'footers', 'quotes')``, telling it to remove headers, signature

blocks, and quotation blocks respectively.

>>> newsgroups_test = fetch_20newsgroups(subset='test',

... remove=('headers', 'footers', 'quotes'),

... categories=categories)

>>> vectors_test = vectorizer.transform(newsgroups_test.data)

>>> pred = clf.predict(vectors_test)

>>> metrics.f1_score(pred, newsgroups_test.target, average='macro') # doctest: +ELLIPSIS

0.77310...

This classifier lost over a lot of its F-score, just because we removed

metadata that has little to do with topic classification.

It loses even more if we also strip this metadata from the training data:

>>> newsgroups_train = fetch_20newsgroups(subset='train',

... remove=('headers', 'footers', 'quotes'),

... categories=categories)

>>> vectors = vectorizer.fit_transform(newsgroups_train.data)

>>> clf = MultinomialNB(alpha=.01)

>>> clf.fit(vectors, newsgroups_train.target)

MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)

>>> vectors_test = vectorizer.transform(newsgroups_test.data)

>>> pred = clf.predict(vectors_test)

>>> metrics.f1_score(newsgroups_test.target, pred, average='macro') # doctest: +ELLIPSIS

0.76995...

5



Some other classifiers cope better with this harder version of the task. Try

running :ref:`sphx_glr_auto_examples_model_selection_grid_search_text_feature_extraction.py` with and without

the ``--filter`` option to compare the results.

.. topic:: Recommendation

When evaluating text classifiers on the 20 Newsgroups data, you

should strip newsgroup-related metadata. In scikit-learn, you can do this by

setting ``remove=('headers', 'footers', 'quotes')``. The F-score will be

lower because it is more realistic.

.. topic:: Examples

* :ref:`sphx_glr_auto_examples_model_selection_grid_search_text_feature_extraction.py`

* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`

1 Let’s do some LDA work

We work with data from the 20 Newsgroups dataset. First, use TF-IDF to vectorize the text, and
then train an LDA model on the result.

In [4]: seed(42)

vectorizer = feature_extraction.text.TfidfVectorizer()

In [5]: news_train = datasets.fetch_20newsgroups(subset="train")

vectors = vectorizer.fit_transform(news_train["data"])

news_test = datasets.fetch_20newsgroups(subset="test")

vectors_test = vectorizer.transform(news_test["data"])

feature_names = vectorizer.get_feature_names()

In [6]: lda = decomposition.LatentDirichletAllocation(n_components=40)

lda.fit(vectors)

Out[6]: LatentDirichletAllocation(batch_size=128, doc_topic_prior=None,

evaluate_every=-1, learning_decay=0.7,

learning_method='batch', learning_offset=10.0,

max_doc_update_iter=100, max_iter=10, mean_change_tol=0.001,

n_components=40, n_jobs=None, n_topics=None, perp_tol=0.1,

random_state=None, topic_word_prior=None,

total_samples=1000000.0, verbose=0)

In [7]: imshow(lda.transform(vectors_test[:10,:]))

Out[7]: <matplotlib.image.AxesImage at 0x117524eb8>

6



In [8]: for topic_idx, topic in enumerate(lda.components_):

print(f"Topic #{topic_idx} ", end="")

print(" ".join([feature_names[i]

for i in topic.argsort()[:-10:-1]]))

Topic #0 ashok iti allen ssto sherzer biochem aws needles biochemistry

Topic #1 arromdee wharton jyusenkyou seirio sp1marse dixie compstat marco eder

Topic #2 dresden inf beck tu irzr17 andre_beck andre tude irs

Topic #3 serdar argic zuma sera extermination armenians 1920 1919 ohanus

Topic #4 dartmouth uvic nubus hades pds gainey hrivnak lafibm gtd597a

Topic #5 wfu den mmc clesun ricardo 68070 mcmains tsa delcoelect

Topic #6 handheld jmd arras cube jr0930 kinsey arcade alec 1708

Topic #7 buffalo acsu b30 dtmedin catbyte ubvmsb absolutes hammerl weiss

Topic #8 fist iscp bellcore vera pierson noye shakala noyes reedr

Topic #9 almanac sunysb cjackson curtin wilson stony brook infante chicogo

Topic #10 scsi israeli ide controller drives bus berkeley hd killed

Topic #11 astein crohn isi immunization jas apollo immunizations oulu ncratl

Topic #12 uicvm uic shuttle alomar higgins ico resurrection baalke jpl

Topic #13 oracle mcguire ebosco borden davewood ualberta selective uclink unauthenticated

Topic #14 ax miavx1 muohio sensor chimps maine quicktime mydisplay jpc

Topic #15 harris ssd synoptics omen zeos neutral outlet dorin marka

Topic #16 geb gordon banks pitt cadre skepticism surrender chastity n3jxp

Topic #17 jake hamburg bontchev bony bony1 livni hydro informatik hernlem

Topic #18 alaska aurora nsmca acad3 pyron shostack dseg skndiv jacked

Topic #19 feustel drake sq acad engin gehrels esin beckman lee

Topic #20 uga ai covington mcovingt georgia athens aisun3 irq eliot

Topic #21 lib xmu libxmu wg2 waii testing boell jhesse hesse

Topic #22 lurie luriem liberalizer 1280x1024 allegheny alleg sepinwall sepinwal smale

Topic #23 oasys dt nswc carderock relays bethesda alphacdc scicom wats

Topic #24 hcf cview petch zisfein jhunix journalism useragent nuntius xxdate

Topic #25 towers oswego imag alaa plants ozonehole belton ching karish

Topic #26 srl ford slee01 corn chi vcu cabell bos lang

Topic #27 the to of and in is that it edu

Topic #28 betz idbsu gozer deane ncratl brandeis bms randall skybridge

Topic #29 mouse pittsburgh printer nec gld pa rangers font montreal

7



Topic #30 shai guday mule gt0523e cursor niguma nlm charlie auvm

Topic #31 gt1091a oeinck mont bezier curves timucin detecting lsid ferdinand

Topic #32 noring erickson steinly topaz telix gordian infj guyd deltabox

Topic #33 henry zoology zoo spencer utzoo kipling gec arens yigal

Topic #34 unm wpi carina ___ pettefar npet ripem erics noah

Topic #35 uv utarlg nuet_ke uta pts wv msstate isis frip

Topic #36 br steveh hendricks libertarians dominance vida regulation thor mdavcr

Topic #37 halat hiram cosmo angmar pooh bears alfalfa pro kou

Topic #38 clipper encryption cramer optilink armenians intercon mathew gay drug

Topic #39 seas risc gwu dsu qazi louray instruction bitzm eniac

Notice how topic 27 has almost all the weight in the predictions, and has the top words

Topic #27 the to of and in is that it edu

We will need to use stop words to clean up the dataset - ALL documents will have plenty of
the, to, of, ....

In [9]: vectorizer = feature_extraction.text.TfidfVectorizer(stop_words="english")

In [10]: vectors = vectorizer.fit_transform(news_train["data"])

vectors_test = vectorizer.transform(news_test["data"])

feature_names = vectorizer.get_feature_names()

In [11]: lda.fit(vectors)

imshow(lda.transform(vectors_test[:10,:]))

Out[11]: <matplotlib.image.AxesImage at 0x11753e7f0>

In [12]: for topic_idx, topic in enumerate(lda.components_):

print(f"Topic #{topic_idx} ", end="")

print(" ".join([feature_names[i]

for i in topic.argsort()[:-10:-1]]))

8



Topic #0 keith livesey sgi caltech schneider morality solntze wpd allan

Topic #1 nada kth cooling towers nicho sehari hemul tower jwa

Topic #2 spss caronni ndw dong dlneal apgea dougb dil clutchless

Topic #3 edu com subject lines organization writes article university posting

Topic #4 behanna higgins fnal syl duke absolutes ashok fnalf bitzm

Topic #5 jayne kulikauskas wpi mmalt liturgy guild relays mydisplay ching

Topic #6 drake acad steiner utoledo ssc lerc vu aberystwyth 1964

Topic #7 mahan tgv louray nuet_ke gwu panayiotakis sussex lazarus pts

Topic #8 stratus sw cdt helmet ati tavares synoptics ripem vos

Topic #9 dyer pyron dseg sabbath ti stafford spdcc skndiv winona

Topic #10 mcguire sutherland ether evans mjs deane bezier blaine bgardner

Topic #11 howland hydro jody levine curt k_p jlevine yadlowsky pmy

Topic #12 fpu skidmore expose whaley tuinstra oasys dt buzz carderock

Topic #13 clarinet br candida brad noring nist yeast steveh raider

Topic #14 kaldis unm dwyer cnsvax d012s658 sni uwec mchp gsh7w

Topic #15 team scsi game edu players israel pitt ca stanford

Topic #16 petch grass valley gvg mpce mq gvg47 chuck almanac

Topic #17 mangoe cosmo angmar wingate fourd lafibm lafayette charley vb30

Topic #18 jake bony bony1 livni b30 uio ifi cpr dtmedin

Topic #19 risc instruction tufts bmd mu batman bissell vera liar

Topic #20 benedikt i3150101 dbstu1 rz mcs rosenau aludra tu erics

Topic #21 ranck bmug fisher coprocessor sdsu babb gec nthu joesbar

Topic #22 shearson hulman pmetzger philips metzger rickert jarthur claremont regulated

Topic #23 llnl crohn pythagorean amoco mont rauser sanderson lawrence migraine

Topic #24 alchemy chem utoronto gerald golchowy olchowy sherri journalism nichols

Topic #25 hernlem omen crypt 8051 chess lebanese hezbollah alaa arens

Topic #26 mikey cacs sq usl pgf comet jupiter fraering radford

Topic #27 ax feustel polygon ipser diablo routine technet csd marka

Topic #28 nysernet broward horne astein dealy an030 logo cview stein

Topic #29 infante tony lib ch981 trial beckman waii duke wg2

Topic #30 hiram qualcomm gainey shai svoboda plymouth guday rdippold qualcom

Topic #31 intercon amanda gtoal uicvm uic walker kratz greek toal

Topic #32 bontchev hamburg dresden informatik fbihh tu inf vesselin beck

Topic #33 ai uga covington mcovingt georgia aisun3 athens lehigh 542

Topic #34 ists stpl rauser dchhabra jr0930 europeans puck ryerson tude

Topic #35 mcmaster espn jb maccs videocart adrian scorer holly telix

Topic #36 okcforum handheld osrhe jmd spacecraft betz conner gozer idbsu

Topic #37 gld umich engin centerline easter hallam dare azerbaijan cunixb

Topic #38 henry alaska zoo spencer israel lunar toronto solar zoology

Topic #39 egalon huot nubus cray gajarsky ricardo njin convenient mcmains

Now we see that almost all topics are predicted to be number 3. The top predictive words for
this category are edu and com.

...so we are basically recognizing sender email addresses. Ooops.
Let’s take a look at a single entry, to see where those domain names are coming from?

In [13]: print(news_train["data"][0])

9



From: lerxst@wam.umd.edu (where's my thing)

Subject: WHAT car is this!?

Nntp-Posting-Host: rac3.wam.umd.edu

Organization: University of Maryland, College Park

Lines: 15

I was wondering if anyone out there could enlighten me on this car I saw

the other day. It was a 2-door sports car, looked to be from the late 60s/

early 70s. It was called a Bricklin. The doors were really small. In addition,

the front bumper was separate from the rest of the body. This is

all I know. If anyone can tellme a model name, engine specs, years

of production, where this car is made, history, or whatever info you

have on this funky looking car, please e-mail.

Thanks,

- IL

---- brought to you by your neighborhood Lerxst ----

Oh look! We are including both a header with metadata and a footer with stereotypical infor-
mation.

Let’s not do that.

In [14]: news_train = datasets.fetch_20newsgroups(subset="train", remove=("headers", "footers", "quotes"))

vectors = vectorizer.fit_transform(news_train["data"])

news_test = datasets.fetch_20newsgroups(subset="test", remove=("headers", "footers", "quotes"))

vectors_test = vectorizer.transform(news_test["data"])

feature_names = vectorizer.get_feature_names()

In [15]: lda.fit(vectors)

imshow(lda.transform(vectors_test[:10,:]))

Out[15]: <matplotlib.image.AxesImage at 0x117a7a278>

10



In [16]: for topic_idx, topic in enumerate(lda.components_):

print(f"Topic #{topic_idx} ", end="")

print(" ".join([feature_names[i]

for i in topic.argsort()[:-10:-1]]))

Topic #0 ax planes lucifer magellan bm grows larc onur yalcin

Topic #1 allah islam rushdie jb cview dad retarded chris islamic

Topic #2 bos chi yankees cal det van que hash md5

Topic #3 just like know don people think does use thanks

Topic #4 geb cadre skepticism shameful intellect n3jxp chastity dsl pitt

Topic #5 sabbath ceremonial deeds printer tie ghetto gentiles kovalev ver

Topic #6 gl nist subscribe ncsl borland hillary cheat widget csrc

Topic #7 satan irq angels mom mouse com1 freewill com3 cobb

Topic #8 ghostscript selfish slavery wc wayne 360k blacks tartar workspaces

Topic #9 ink observations bj 27 deskjet cell 1st wdve stevens

Topic #10 moral fast folks morality sin women blood lord hours

Topic #11 config font bat __ pitching autoexec kc lopez offense

Topic #12 lib usr alomar postscript icon icons baerga phigs compiled

Topic #13 chicago angeles los detroit vancouver montreal pts finals calgary

Topic #14 ssf network chop ini lite numlock p1 cci hartmann

Topic #15 scsi mouse printer modem disks microsoft fonts motherboard audio

Topic #16 stephanopoulos bait rtrace dictionary sentiments danny naval astemizole ocean

Topic #17 hitter aids ites tree lankford clayton pinch q700 dean

Topic #18 ati candida 3401 deletion toshiba turbo manta yeast vgalogo

Topic #19 bmp auto jpeg extended bitmap lssu ottoman fun maine

Topic #20 dma tek ico blew randy domain manhattan bobbe sank

Topic #21 armenian armenians turkish arabs turks turkey armenia army des

Topic #22 test weaver fundamentalist supreme detector font fonts bound handguns

Topic #23 uv ripem nada kth yzerman tte deluxe revelation marital

Topic #24 adam das shostack harvard rr speakers survivor woof tenants

Topic #25 tanks __ atari dpi mask subaru 2600 bitmap headline

Topic #26 clemens meaningless xarchie mil tcora coradeschi pica leg xservers

Topic #27 qur winmarks adaptor azerbaijani islam fpu sumgait muslims tt

Topic #28 authority alarm 231 dortmund povray searching vesa xv congruent

Topic #29 gateway nick biker gang yeast ton piece lud 1069

Topic #30 displays rec implement wiring cpsr leftover winners pointer savard

Topic #31 ulf mf cubs answered idacom critus posed ext reboot

Topic #32 vcr 04 jays pit 03 mpeg shack device tor

Topic #33 adaptec modem 32bis jpg rz350 pmp 1964 xv 001

Topic #34 feustel morris n9myi obp alomar rbi slg ozzie motorcycles

Topic #35 espn lunar played cup wins gm jose traded caps

Topic #36 dtmedin catbyte ingr b30 ditto 205 accelerator gm accelerators

Topic #37 hello instruction ampere birthday bel unc null sleeve risc

Topic #38 nubus pds quakers kkeller keller ivy champs upenn sas

11



Topic #39 s1 s2 buggy creed purchased ironic u1 islam invisible

But wait a moment here now. LDA works on a word count matrix whereas TF-IDF produces
a weighting on the word counts.

So the frequency of each word in each document is not currently matching the probabilistic
model in LDA. Let’s fix that.

In [17]: vectorizer = feature_extraction.text.CountVectorizer(stop_words="english")

In [18]: vectors = vectorizer.fit_transform(news_train["data"])

vectors_test = vectorizer.transform(news_test["data"])

feature_names = vectorizer.get_feature_names()

In [19]: lda.fit(vectors)

imshow(lda.transform(vectors_test[:10,:]))

Out[19]: <matplotlib.image.AxesImage at 0x1179decc0>

In [20]: for topic_idx, topic in enumerate(lda.components_):

print(f"Topic #{topic_idx} ", end="")

print(" ".join([feature_names[i]

for i in topic.argsort()[:-10:-1]]))

Topic #0 lib libxmu xmu doug symbol university undefined wip com3

Topic #1 water just com dept use right fans don fan

Topic #2 00 said 02 armenian san new 03 000 01

Topic #3 anonymous posting henrik bm people anonymity service want anon

Topic #4 file right states amendment gun militia congress good control

Topic #5 ax b8f 145 a86 max 1d9 0t 2di 34u

Topic #6 said didn just don know people like went time

Topic #7 team 10 game 25 11 12 15 season 16

Topic #8 tyre mydisplay june lines 1968 gc 1969 cell draw

Topic #9 drive scsi disk card windows use hard dos pc

Topic #10 israel jews israeli turkish jewish people greek arab like

12



Topic #11 theory universe larson light van uv tt physical het

Topic #12 game players cubs alomar baseball lot suck games like

Topic #13 500 000 250 kk 333 400 100 200 win

Topic #14 000 committee firearms batf pope sb echo hojali hb

Topic #15 don just know gay people new men dog p2

Topic #16 car like just good don time bike know ve

Topic #17 cross allocation edu picture unit linked cview 45 sleeve

Topic #18 00 wire ground 50 use circuit power wiring new

Topic #19 insurance attack private row maria col points time op_cols

Topic #20 mail edu image ftp files information data software available

Topic #21 file entry output program entries ripem section rules printf

Topic #22 mr stephanopoulos president 00 think know don going dos

Topic #23 people don think government like just make good time

Topic #24 cx w7 c_ uw t7 ck chz lk hz

Topic #25 ax max g9v pl b8f a86 1t 3t bhj

Topic #26 monitor video color screen vga card bit apple like

Topic #27 db mov bh cs si section al byte di

Topic #28 ra comments machines type lucifer m5 mv canon algebra

Topic #29 key chip keys clipper encryption law bit use des

Topic #30 space nasa earth launch orbit shuttle satellite lunar moon

Topic #31 gun guns crime koresh control use rate self don

Topic #32 edu window com server use file windows motif available

Topic #33 technology privacy information encryption 1993 new research use security

Topic #34 edu msg food patients disease gordon banks soon com

Topic #35 armenian armenians turkish genocide people armenia russian turks soviet

Topic #36 magi mt mv __ gl mh m0 0c mg

Topic #37 just radar don south ve think does like war

Topic #38 mp reds mc precision atheism mf m_ mw mq

Topic #39 god people jesus think does say believe don just

Now FINALLY we are getting some spread in our topic allocations!
Let’s have a look at how our 40 detected topics distribute among the newsgroup identities,

shall we?

In [21]: topic_distr = zeros((len(news["target_names"]),lda.n_components))

message_distr = lda.transform(vectors_test)

for i in range(len(news_test["target"])):

topic_distr[news_test["target"][i],:] = message_distr[i,:]

In [22]: imshow(topic_distr)

yticks([0,5,10,15,20])

Out[22]: ([<matplotlib.axis.YTick at 0x11755ca90>,

<matplotlib.axis.YTick at 0x1179e4358>,

<matplotlib.axis.YTick at 0x1174a45c0>,

<matplotlib.axis.YTick at 0x1174e9c88>,

<matplotlib.axis.YTick at 0x117a355c0>],

<a list of 5 Text yticklabel objects>)

13



In [23]: (topic_distr.argmax(axis=0) == 4).nonzero()

Out[23]: (array([ 1, 5, 8, 12, 24, 25, 26, 28]),)

In [24]: print("Topic keywords by newsgroup")

print("===========================\n\n")

for ix, ng in enumerate(news_test["target_names"]):

print(f"{ng}")

for topic_idx in (topic_distr.argmax(axis=0) == ix).nonzero()[0]:

print(f"\tTopic #{topic_idx} ({topic_distr[ix,topic_idx]:.2f}): ", end="")

print(" ".join([feature_names[i]

for i in lda.components_[topic_idx,:].argsort()[:-8:-1]]))

Topic keywords by newsgroup

===========================

alt.atheism

Topic #20 (0.64): mail edu image ftp files information data

Topic #38 (0.22): mp reds mc precision atheism mf m_

comp.graphics

comp.os.ms-windows.misc

Topic #9 (0.62): drive scsi disk card windows use hard

Topic #21 (0.07): file entry output program entries ripem section

comp.sys.ibm.pc.hardware

Topic #37 (0.12): just radar don south ve think does

comp.sys.mac.hardware

14



Topic #1 (0.53): water just com dept use right fans

Topic #5 (0.00): ax b8f 145 a86 max 1d9 0t

Topic #8 (0.00): tyre mydisplay june lines 1968 gc 1969

Topic #12 (0.19): game players cubs alomar baseball lot suck

Topic #24 (0.00): cx w7 c_ uw t7 ck chz

Topic #25 (0.00): ax max g9v pl b8f a86 1t

Topic #26 (0.18): monitor video color screen vga card bit

Topic #28 (0.00): ra comments machines type lucifer m5 mv

comp.windows.x

Topic #32 (0.79): edu window com server use file windows

misc.forsale

rec.autos

Topic #2 (0.08): 00 said 02 armenian san new 03

Topic #16 (0.46): car like just good don time bike

Topic #18 (0.16): 00 wire ground 50 use circuit power

Topic #36 (0.06): magi mt mv __ gl mh m0

rec.motorcycles

Topic #13 (0.07): 500 000 250 kk 333 400 100

Topic #27 (0.10): db mov bh cs si section al

rec.sport.baseball

Topic #3 (0.03): anonymous posting henrik bm people anonymity service

Topic #22 (0.10): mr stephanopoulos president 00 think know don

rec.sport.hockey

Topic #7 (0.48): team 10 game 25 11 12 15

Topic #10 (0.03): israel jews israeli turkish jewish people greek

sci.crypt

Topic #19 (0.02): insurance attack private row maria col points

Topic #29 (0.69): key chip keys clipper encryption law bit

sci.electronics

Topic #35 (0.08): armenian armenians turkish genocide people armenia russian

sci.med

Topic #6 (0.25): said didn just don know people like

Topic #17 (0.39): cross allocation edu picture unit linked cview

Topic #33 (0.04): technology privacy information encryption 1993 new research

sci.space

Topic #4 (0.06): file right states amendment gun militia congress

Topic #30 (0.27): space nasa earth launch orbit shuttle satellite

soc.religion.christian

Topic #39 (0.97): god people jesus think does say believe

talk.politics.guns

talk.politics.mideast

Topic #0 (0.06): lib libxmu xmu doug symbol university undefined

Topic #14 (0.06): 000 committee firearms batf pope sb echo

Topic #23 (0.60): people don think government like just make

talk.politics.misc

Topic #15 (0.07): don just know gay people new men

Topic #31 (0.16): gun guns crime koresh control use rate

Topic #34 (0.16): edu msg food patients disease gordon banks

15



talk.religion.misc

Topic #11 (0.16): theory universe larson light van uv tt

In [ ]:

16


	Let's do some LDA work

