Uniqueness of Nonnegative Radial Solutions for Semipositone Problems on Exterior Domains

Ratnasingham Shivaji University of North Carolina at Greensboro

We consider the problem

$$\begin{cases} -\Delta u = \lambda K\left(|x|\right) f\left(u\right), & x \in \Omega\\ u = 0 & \text{if } |x| = r_0\\ u \to 0 & \text{as } |x| \to \infty \end{cases}$$

where λ is a positive parameter, $\Delta u = \operatorname{div}(\nabla u)$ is the Laplacian of u, $\Omega = \{x \in \mathbb{R}^n; n > 2, |x| > r_0\}, K \in C^1([r_0, \infty), (0, \infty))$ is such that $\lim_{r \to \infty} K(r) = 0$ and $f \in C^1([0, \infty), \mathbb{R})$ is a concave function which is sublinear at ∞ and f(0) < 0. We establish the uniqueness of nonnegative radial solutions when λ is large.