**Instructions:** Do 8 problems in total, with exactly two problems from Part I, and at least two problems from each of Parts II and III. If you attempt more than 8 problems, identify which 8 should be graded. Justify your answers and clearly indicate which "well-known" theorems you cite.

## $\mathbf{Part}~\mathbf{I}$

**1.** Suppose that  $(X, \tau)$  is a topological space and that  $\tau$  is closed under arbitrary intersections. Prove that  $(X, \tau)$  is Hausdorff if and only if  $(X, \tau)$  is discrete.

**2.** Let A be a non-empty subset of the metric space X and define  $f(x) = \inf\{d(x, a) \mid a \in A\}$ . Show that f(x) = 0 if and only if  $x \in \overline{A}$ .

**3.** Let *I* be the unit interval [0, 1] in  $\mathbb{R}$  and let  $X = \mathcal{C}(I, I)$  be the space of continuous maps from *I* to *I* with the compact-open topology. For each  $x \in I$ , let

$$U_x = \left\{ f : I \to I : |f(x) - x| < \frac{1}{2} \right\}.$$

- (a) Prove that the collection  $\{U_x\}_{x \in I}$  is an open cover of X.
- (b) Prove or disprove: the collection  $\{U_x\}_{x\in I}$  has a finite subcover.

**4.** Let X and Y be spaces and let  $f: X \to Y$ . Prove that f is a continuous injection if and only if the following diagram is a pullback square:

$$\begin{array}{ccc} X & \stackrel{id}{\longrightarrow} & X \\ id \downarrow & & \downarrow f \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

## Part II

**5.** Let  $X = S^1 \vee S^1$  be the figure-8 graph with loops labeled a, b. Let  $f: X \to X$  be a map such that  $f_*(a) = ba$  and  $f_*(b) = bab$ . Let Y be the mapping torus of f:

$$Y = X \times [0,1] / \sim$$
, where  $(x,0) \sim (f(x),1)$ .

Construct a  $\Delta$ -complex structure on Y, and use it to give a presentation of  $\pi_1(Y)$ .

- **6.** Find three connected non-homeomorphic 2-fold covering spaces of  $\mathbb{R}P^2 \vee S^1$ .
  - (a) Justify algebraically.
  - (b) Describe the covers using a sketch or otherwise.

**7.** Prove that if X is a path connected space and  $x, y \in X$  then the based loop spaces  $\Omega(X, x)$  and  $\Omega(X, y)$  are homotopy equivalent.

8. Let X be the quotient space of a cube  $I^3$  obtained by identifying each pair of opposite square faces with a right-handed quarter-twist. Find a presentation for  $\pi_1(X)$ .

**9.** State the classification of closed surfaces. Compute the Euler characteristic of the surface obtained by identifying the sides of the polygon drawn below, write down a presentation for it's fundamental group, and identify which surface it is.



## Part III

**10.** On the Klein bottle K, let  $\gamma$  be the small closed curve shown in the figure. Let M be a Möbius band. Let  $X = K \cup M / \sim$ , where  $\gamma$  is identified with  $\partial M$ . Use the Mayer-Vietoris theorem to compute the homology groups of X.



11. Let Top be the category of topological spaces and let Ab be the category of graded abelian groups.

- (a) Describe singular homology as a functor  $H : \mathsf{Top} \to \mathsf{Ab}$ .
- (b) Does the functor H have a left or right adjoint  $Ab \rightarrow Top$ ?

**12.** Recall that  $H^{2n}(\mathbb{CP}^n, \mathbb{Z}) \simeq \mathbb{Z}$ . A map  $f : \mathbb{CP}^n \to \mathbb{CP}^n$  is orientation preserving if the map  $f^* : H^{2n}(\mathbb{CP}^n) \to H^{2n}(\mathbb{CP}^n)$  is multiplication by a nonnegative integer. Prove that if n is even, then every map  $f : \mathbb{CP}^n \to \mathbb{CP}^n$  is orientation preserving.

**13.** Let T and K denote the torus and Klein bottle. Prove that for any map  $f: T \to K$ , the map  $f^*: H^2(K; \mathbb{Z}_2) \to H^2(T; \mathbb{Z}_2)$  is trivial. You may use the cup product structure on the cohomology of these spaces without proof as long as you state it clearly.

- **14.** Let M be a closed, connected, orientable 4-manifold with  $\pi_1(M) \cong \mathbb{Z} * \mathbb{Z}$  and  $\chi(M) = 5$ .
  - (a) Compute  $H_i(M, \mathbb{Z})$  for all *i*.
- (b) Let X be a CW-complex with no 3–cells. Show that M is not homotopy equivalent to X.