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Instructions: Do 8 problems in total, with exactly two problems from Part I, and at least two
problems from each of Parts II and III. If you attempt more than 8 problems, identify which 8 should
be graded. Justify your answers and clearly indicate which “well-known” theorems you cite.

Part I

1. Prove or disprove:

(a) Compact is a homotopy invariant.

(b) Connected is a homotopy invariant.

2. Define two continuous maps f, g : X → X to be topologically equivalent if and only if there exists a
homeomorphism h : X → X with g = hfh−1. Prove or disprove:

(a) the maps f, g : R→ R defined by f(x) = 2x and g(x) = 8x are topologically equivalent.

(b) the maps f, g : S1 → S1 defined by f(eiθ) = e2iθ and g(eiθ) = e8iθ are topologically equivalent.

3. Let X and Y be topological spaces and let S = Top(X,Y ) be the set of continuous maps from X to
Y . Any function f : Z → S has an adjoint function F : X ×Z → Y defined by F (x, z) = f(z)(x). Call
a topology on S conjoining if it has the property that f : Z → S is continuous whenever its adjoint
F : X × Z → Y is continuous.

Prove that a topology on S is conjoining if and only if the evaluation map ev : X × S → Y is
continuous. Here the evaluation map is defined by (x, f)

ev7→ f(x).

4. Suppose X and Y are noncompact, locally compact Hausdorff spaces. Prove that (X×Y )∗ ∼= X∗∧Y ∗.
Here, X∗ is the one point compactification of X and ∧ means smash product of pointed spaces, with
the base point being the point added in the compactification.

5. Show that if X is a separable metric space, i.e. it has a countable dense subset, then the topology on
X is second countable.

6. Let X and Y be spaces and consider Y X with the product topology. Prove that A ⊆ Y X has compact
closure if and only if for every x ∈ A, the set Ax := {f(x) : f ∈ A} has compact closure in Y .

Part II

7. Is the functor π1 : Top∗ → Grp representable?

8. Let X be the wedge sum of RP 2 and a circle. Find all 3-fold covers of X.

9. A simple closed curve in the torus is essential if its homotopy class is non-zero. Let X be the space
formed by identifying an essential simple closed curve on the torus S1 × S1 with the boundary of a
Möbius band. Use van Kampen’s theorem to write down a presentation for π1X.

10. Let C∗ = C \ {0} denote the nonzero complex numbers, fix λ ∈ R>0, λ 6= 1 and let τ : C∗ → C∗ be
given by τ(z) = λz. Let X be the quotient of C∗ by powers of τ , i.e. z ∼ w if there is an n ∈ Z such
that z = τn(w).

(a) What is X?

(b) Is the quotient map p : C∗ → X a covering map? Explain why or why not.
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11. In R3 let A denote the unit circle in the xy-plane centered at the origin, B denote the unit circle in
the xy-plane centered at (4, 0, 0), and C denote the z-axis. Using the fundamental group prove that
the spaces R3 − (A ∪ C) and R3 − (B ∪ C) are not homotopic. (Hint: Deform the spaces.)

12. Is RP 3 homeomorphic to the product M1 ×M2 of manifolds of lower non-zero dimensions? Explain.

Part III

13. Let X be the space formed by taking the unit sphere in R3 union the portion of the xy-plane lying
inside the unit ball. Write down an explicit cell structure on X (not on a space homotopy equivalent
to X) and use the cell structure to compute the homology groups of X (not via homotopy or wedge
sums).

14. Let X be the space obtained by gluing three discs together along their boundary (by homeomorphisms
of their boundaries). Use the Mayer-Vietoris theorem to calculate the homology groups of X.

15. Write down an explicit ∆-complex structure on the Klein bottle, and use it to compute the cup product
structure on cohomology with Z/2Z coefficients.

16. Let X = S2 ∨ S4. Show that X has the same integral homology groups as CP 2, but is not homotopy
equivalent to CP 2.

17. Let M be a closed, connected, orientable n-dimensional manifold and let f : Sn → M be a map such
that deg(f) 6= 0. Compute H∗(M ;Q).
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