Topology Qualifying Exam

Mathematics Program, CUNY Graduate Center

Spring 2021

Instructions: Do 8 problems in total, with exactly two problems from Part I, and at least two problems from each of Parts II and III. If you attempt more than 8 problems, identify which 8 should be graded. Justify your answers and clearly indicate which "well-known" theorems you cite.

Part I

- 1. Prove that the Stone–Čech compactification of a countable discrete space is uncountable.
- 2. Prove or disprove: The property of being Hausdorff for a topological space is a homotopy invariant.
- 3. (a) Define the product topology on $[0,1]^{[0,1]}$.
 - (b) Is the evaluation map $[0,1] \times [0,1]^{[0,1]} \rightarrow [0,1]$ continuous when $[0,1]^{[0,1]}$ is given the product topology?
- 4. (a) Prove that every countable metric space M containing at least two points is disconnected.
 - (b) Prove that there exist countable topological spaces with more than two elements which are connected.
- 5. Suppose X and Y are noncompact, locally compact Hausdorff spaces. Prove that $(X \times Y)^* \cong X^* \wedge Y^*$. Here, X^* is the one point compactification of X and \wedge means smash product of pointed spaces, with the base point being the point added in the compactification.
- 6. Suppose that the following is a pullback diagram in Top:

Prove that if p is monic then P is monic.

Part II

- 7. Does the functor $\pi_1 : \mathsf{Top}_* \to \mathsf{Grp}$ from the category Top_* of pointed topological spaces to the category Grp of groups have a left or right adjoint $F : \mathsf{Grp} \to \mathsf{Top}_*$? Explain.
- 8. Let X be the torus $S^1 \times S^1$ with an open disc removed. Construct all two-fold covers of X up to covering space isomorphism, and identify how many boundary components they have.
- 9. Let X be the space obtained by taking two Möbius bands and gluing their boundaries together by a homeomorphism. Use van Kampen's theorem to write down a presentation for $\pi_1 X$.
- 10. (a) Let X be a finite cell complex and let $p: Y \to X$ be a k-sheeted covering space. Prove that $\chi(Y) = k\chi(X)$.
 - (b) Let M_g denote a closed orientable surface of genus g. Prove or disprove: There exists a covering map $p: M_{10} \to M_3$.
- 11. Let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ denote the nonzero complex numbers and consider the exponential map $\exp : \mathbb{C} \to \mathbb{C}^*$. Prove that there is no continuous map $f : \mathbb{C}^* \to \mathbb{C}$ with $\exp \circ f = \operatorname{id}_{\mathbb{C}^*}$.
- 12. Is $\mathbb{R}P^3$ homeomorphic to the product $M_1 \times M_2$ of manifolds of lower non-zero dimensions? Explain.

Part III

- 13. Let X be the space formed by taking the unit sphere in \mathbb{R}^3 union the segment of the x-axis lying inside the unit ball. Write down an explicit cell structure on X (not on a space homotopy equivalent to X) and use the cell structure to compute the homology groups of X (not via homotopy or wedge sums).
- 14. Let X be the double of a solid torus, i.e. the space obtained by taking two copies of a solid torus and gluing their boundaries together by the identity map. Use the Mayer-Vietoris theorem to calculate the homology groups of X.
- 15. Let $X = S^2 \times T^2$.
 - (a) Compute the homology groups $H_*(X;\mathbb{Z})$.
 - (b) Compute the cohomology ring $H^*(X;\mathbb{Z})$.
 - (c) Compute $\chi(X)$.

Please state all the theorems you are using.

- 16. Let X be the cell complex with one vertex, one 1-cell and two 2-cells glued using the attaching maps $z \mapsto z^2$ and $z \mapsto z^5$. Compute the homology groups $H_*(X;\mathbb{Z})$. Is X homeomorphic to a closed surface?
- 17. Let M be a closed, connected, orientable n-dimensional manifold and let $f: S^n \to M$ be a map such that $\deg(f) \neq 0$. Compute $H_*(M; \mathbb{Q})$.