Topology Qualifying Exam

Mathematics Program, CUNY Graduate Center

Spring 2018

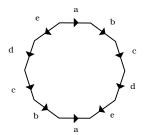
Instructions: Do 8 problems in total, with exactly two problems from Part I, and at least two problems from each of Parts II and III. If you attempt more than 8 problems, identify which 8 should be graded. Justify your answers and clearly indicate which "well-known" theorems you cite.

Part I

- 1. (a) Let X be a Hausdorff topological space. If $\{x_n\}$ is a convergent sequence in X, prove that $\lim_{n \to \infty} x_n$ is unique.
 - (b) Suppose $f: X \to Y$ is a continuous surjective function. Show that if X is compact and Y is Hausdorff, then f is a quotient map.
- 2. Let \mathbb{R}^{ω} be the product of \mathbb{N} copies of \mathbb{R} . Let $Y = \prod_{n \geq 1} (-\frac{1}{n}, \frac{1}{n})$.
 - (a) Prove that the box and the product topologies on \mathbb{R}^{ω} are not homeomorphic.
 - (b) Why is $f: \mathbb{R} \to \mathbb{R}^{\omega}$ given by f(x) = (x, x, x, ...) continuous in one topology, but not in the other?
- 3. (a) Let A and B be proper subsets of topological spaces X and Y, respectively. Show that if X and Y are both connected, then $(X \times Y) (A \times B)$ is connected.
 - (b) Let A be a non-empty subset of the metric space X and define $f(x) = \inf\{d(x, a) \mid a \in A\}$. Show that f(x) = 0 if and only if $x \in \overline{A}$.
- 4. Let $\{O_i\}$ be a collection of open sets which cover \mathbb{R}^n . Prove that there exists a collection of open sets $\{U_i\}$ which cover \mathbb{R}^n with the properties that for each i we have $U_i \subseteq O_i$ and each compact subset of \mathbb{R}^n is disjoint from all but finitely many of the U_i .

Part II

- 5. (a) Prove that a 2*n*-sided polygon with sides identified in pairs is homeomorphic to a closed surface.
 - (b) Classify the surface obtained by identifying opposite sides of a 10-gon, identified with opposite orientation as we traverse in counterclockwise direction around the 10-gon. See figure.



- 6. On the torus $T = S^1 \times S^1$, let $\gamma = \{0\} \times S^1$ be a meridian on T. Let β be the equator S^2 . Let $X = T \cup S^2$ be the space obtained by identifying γ with β . Compute $\pi_1(X, x_0)$.
- 7. Describe three connected non-homeomorphic 2–fold covering spaces of $\mathbb{R}P^2 \vee S^1$.
 - (a) Justify algebraically.
 - (b) Sketch the covers.
- 8. Let T be the 2-torus. Use covering spaces to prove that any map $f: \mathbb{R}P^2 \to T$ is null-homotopic.

Part III

- 9. Let F_7 be the non-orientable surface of genus 7, given by identifying edges on a 14–gon.
 - (a) Compute the homology of F_7 using cellular homology.
 - (b) Compute the homology of F_7 using the Mayer-Vietoris sequence.
- 10. Let T_1 and T_2 be solid tori $D^2 \times S^1$. Let $X = T_1 \cup_f T_2$ be the 3-manifold obtained by the attaching map $f: \partial D^2 \times S^1 \to \partial D^2 \times S^1$, given by f(x, y) = (x, y); i.e., attach the solid tori by identifying their meridians. Use the Mayer-Vietoris sequence to compute the homology of X.
- 11. Let M be a closed, connected, orientable 4-manifold with $\pi_1(M) \cong \mathbb{Z}_3 * \mathbb{Z}_3$ and $\chi(M) = 5$.
 - (a) Compute $H_i(M, \mathbb{Z})$ for all *i*.
 - (b) Let X be a CW-complex with no 3-cells. Show that M is not homotopy equivalent to X.
- 12. Let $m, n \ge 1$.
 - (a) Describe the cohomology rings $H^*(\mathbb{R}P^m \vee \mathbb{R}P^n; \mathbb{Z}/2)$ and $H^*(\mathbb{R}P^m \times \mathbb{R}P^n; \mathbb{Z}/2)$.
 - (b) Show that $\mathbb{R}P^m \vee \mathbb{R}P^n$ cannot be a retract of $\mathbb{R}P^m \times \mathbb{R}P^n$.
- 13. Let M be a connected *n*-manifold. Let D be an embedded closed *n*-disc in M. Show that if $\partial D \hookrightarrow M \setminus D^{\circ}$ is null-homotopic, then M is orientable.