Topology Qualifying Exam
CUNY Graduate Center Mathematics Program
Spring 2016

Instructions: Do 8 problems in total, with exactly two problems from Part I,
and at least two problems from each of Parts II and III. If you attempt more
than 8 problems, identify which 8 should be graded. Justify your answers, and
include the names or the precise statements of any theorems you cite.

Part I

1. Call a space KC if it has the property that every compact set is closed.

(a) Prove that every Hausdorff space X is KC.
(b) Give an example of a space Y that is KC but not Hausdorff. Justify.

2. Let X be a contractible space and let Y be any topological space. Show
that X x Y is homotopy equivalent to Y.

3. Prove that the following two descriptions of RP? are homeomorphic:
Let X = S?/x ~ (—x), where z and —z are antipodal points on S2.
Let Y = D?/x ~ (—xz), where z and —z are antipodal points on dD?.

4. Prove or disprove:
(a) There is a quotient map f: (0,1) — [0, 1].
(b) There is a quotient map g: [0,1] — (0, 1).
(¢) The one-point compactification of R is homeomorphic to RP'.
)

(d) The one-point compactification of R? is homeomorphic to RP?.
Part 11

5. Let X be the space formed by identifying the boundaries of two Mobius
bands using the degree two map S* — S'. Use van Kampen’s theorem to
write down a presentation for m (X).

6. Explicitly enumerate all 3-fold covers of the Klein bottle.

7. Let S be the closed orientable surface of genus 2. Let X be the regular
(or normal) cover of S with deck transformation group Z x Z.
(a) Describe X explicitly as a subspace of R3.
(b) For this covering map, describe the lifts of a standard generating set
of m1(S) and of the commutator subroup [m1(S), m1(S)].

8. Let F;, be the free group with n generators. Show that for any k < oo,
the free group F), has only a finite number of subgroups of index k.



9.

10.

(a) Figure for Q10 (b) Figure for Q11

Figure 1

Give an example of a group that cannot be the fundamental group of a
one or two dimensional compact manifold, possibly with boundary, and
justify carefully why this is the case. Then, construct a space with that
group as its fundamental group.

State the classification of closed orientable surfaces. Compute the Eu-
ler characteristic of the surface obtained by identifying the sides of the
polygon as indicated in Figure la, and identify which surface it is.

Part III
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15.

16.

Let X be the space obtained by gluing the boundary of a disc to S? along
a figure-eight curve, as shown in Figure 1b. Give an explicit cell structure
for X, and use it to compute the homology groups of X.

(a) Show that a Mobius band retracts onto S*.
(b) Show that a Mébius band does not retract onto its boundary.
Let X be the space formed from S? x I by identifying (x, 1) with (f(z),0),

where f is an orientation reversing homeomorphism f: S? — S2. Use the
Mayer-Vietoris sequence to compute the homology groups of X.

Write down an explicit A-complex structure on the Klein bottle, and
use it to compute the cup product structure on cohomology with Z/27
coefficients.

(a) Calculate the cup product ring structure on H*(CP?; Z), using Poincaré
duality, or any other method.
(b) Show that there is no degree one map from S* to CP?

What can you say about the homology of a closed connected orientable 3-
manifold M whose fundamental group is the free group on two generators?



