
Topology Qualifying Exam

Mathematics Program CUNY Graduate Center

Fall 2015

Instructions: Do 8 problems in total, with exactly two problems from Part I, and at least two problems
from each of Parts II and III. If you attempt more than 8 problems, identify which 8 should be graded.
Justify your answers and include statements of any theorems you cite.

Part I

1. Let X be the subset of R2 defined by X =
⋃∞

n=1 Sn, where Sn = {(x, y) | (x−1/n)2 +y2 = 1/n2}, with
the subspace topology, sometimes known as the Hawaiian earring. Show that X is not homeomorphic
to a countable wedge of circles.

2. Let τ be the standard topology on the unit interval I = [0, 1] and let τ ′ be another topology on I.

(a) Prove that if τ ′ ( τ then I cannot be Hausdorff with the topology τ ′.

(b) Prove that if τ ( τ ′ then I cannot be compact with the topology τ ′.

3. Consider the rationals Q ⊂ R with the usual subspace topology.

(a) Show that Q is not locally compact.

(b) Show that the one-point compactification Q̂ is not Hausdorff.

4. Let Top be the category of topological spaces, let CH be the subcategory of compact Hausdorff spaces
and let U : CH→ Top be the functor that is the identity on objects and morphisms. The functor U
has a left adjoint β : Top → CH (called the Stone-Čech compactification). Prove that any compact
Hausdorff space X is a retract of βUX.

Part II

5. Let X be a path-connected, locally path-connected space with finite fundamental group. Let Y =
S1 × S1 × · · · × S1, a product of n copies of the circle with n ≥ 1. Show that every map f : X → Y is
null-homotopic.

6. Let X = RP2 ∨ S1. Carefully enumerate all connected 3–fold covers of X.

7. Let Tn be the surface obtained by removing n > 1 points from the torus. How many isomorphism
classes of regular, connected, 2-fold covers of Tn are there?

8. Let X be the union of the unit 2-sphere in R3, together with the segment of the z-axis inside the
2-sphere (with the subspace topology).

(a) Compute π1X.

(b) Describe the universal cover X̃, including a local picture, and describe the action of π1X on X̃.

(c) Show that X has an n-fold cover for each n ∈ N.

9. The space X is obtained by attaching a Möbius strip along its boundary to one of the meridians of
a two-torus (marked γ in the picture below). Find the fundamental group of X for some choice of a
base point.
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10. State the classification of closed orientable surfaces. Compute the Euler characteristic of the surface
obtained by identifying the sides of the polygon as indicated below, and identify which surface it is.
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Part III

11. Consider the operation on surfaces of self-gluing. For a surface M , remove the interior of two discs
and glue along the boundaries. Notice that there are two ways of doing this: an orientation preserving
and an orientation reversing. Denote the resulting surfaces by M+ and M−. Determine M+ and M−

for: the sphere, the torus, and the projective plane.

12. Let X = S1 ∨ S1 ∨ S2.

(a) Show that X and the 2-torus T 2 have CW-structures with four cells: one 0-cell, two 1-cells and
one 2-cell.

(b) Use cellular homology to show that T 2 and X have isomorphic homology groups.

(c) Use cup products to show that T 2 and X are not homeomorphic.

13. Caclulate the cohomology ring of CP2. Then calculate the cohomology ring of CP2 × CP2.

14. Consider a surface obtained by identifying edges of a square as indicated below.

(a) Give this space a ∆-complex structure and use it to compute its simplicial homology.

(b) Let point p be at the center of the above square and D a small open two-disk centered at p. Com-
pute the homology of the surface via the Mayer-Vietoris sequence, using D and the complement
of p as the two open sets.

15. Let M be a compact orientable 3-manifold with non-empty boundary. Show that the kernel of the
map i∗ : H1(∂M ;Z)→ H1(M ;Z) is non-trivial, where i : ∂M →M is the inclusion map.
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