Topology Qualifying Exam

Mathematics Program CUNY Graduate Center

Spring 2012

Instructions: Do at least 8 problems in total, with exactly two problems from Part I, and at least two problems from each of Parts II and III. Please justify your answers.

Part I

- 1. (a) Prove that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.
 - (b) Show that every retract A of a Hausdorff space X is closed in X. Hint: Show that $X \setminus A$ is open.
- 2. Prove either the Baire category theorem or Tychonoff's theorem.
- 3. (a) Show that the product of two connected spaces is connected.
 - (b) Let X be a compact metric space. Show that every sequence has a convergent subsequence.
- 4. (a) If A is a subset of a topological space, X and f : A → Y a continuous map. We say f can be extended to X if there is a continuous map, g : X → Y with g = f on A. Prove that if A is dense in X and Y is Hausdorff, then f can be extended to X in at most one way.
 - (b) Give an example of spaces X and Y, a dense subset, A and a map $f: A \to Y$ such that f can be extended to X in more than one way.
 - (c) Give an example of spaces X and Y, a dense subset, A and a map $f: A \to Y$ such that f cannot be extended.

Part II

- 1. Let X be the subset of \mathbb{R}^3 consisting of the unit sphere, the segment of the z-axis inside the unit sphere, and the unit disc in the xy-plane. Find the fundamental group of X. (Hint: feel free to consider a homotopy equivalent space.)
- 2. Find all connected 3-fold covers of the wedge sum of a circle and a projective plane, carefully justifying your answer.
- 3. Prove that if X is a simply-connected, locally path-connected pointed space (i.e. has a distinguished base point) and $p: E \to B$ is a covering projection of pointed spaces, then $p_*[X, E] \to [X, B]$ is bijective. Here [X, Y] denotes the set of pointed homotopy classes of pointed maps from X to Y.

- 4. Let X be a closed orientable surface and $p: Y \to X$ be a covering map. If Y is homeomorphic to X and p is not a homeomorphism then show that X is a torus.
- 5. Let M and N be closed, connected and orientable *n*-manifolds. Let f: $M \to N$ be a degree one map. Show that $f_* : \pi_1(M) \to \pi_1(N)$ is onto.
- 6. Let X and Y be path connected spaces. Let CX denote the cone of X. The *join* of X and Y is defined as $X * Y = (CX \times Y) \cup_{X \times Y} (X \times CY)$. Compute $\pi_1(X * Y)$ using the Seifert-Van-Kampen theorem.

Part III

- 1. Let $X = X_1 \cup X_2$, where X_1 and X_2 are both tori $S^1 \times S^1$, and $X_1 \cap X_2$ is a simple closed curve which bounds a disc in X_1 and is essential in X_2 . Use the Mayer-Vietoris sequence to find the homology of X.
- 2. Let S_g be the closed orientable surface of genus g, and let $f: S_2 \to S_3$ be a continuous map. Write down the ring structure on the cohomology of S_2 and S_3 , no proof is required. Show that $f^*: H^2(S_3) \to H^2(S_2)$ must be zero, by any method. (Hint: the intersection form is non-degenerate.)
- 3. Show that \mathbb{RP}^3 and $\mathbb{RP}^2 \vee S^3$ have the same fundamental groups and homology groups. Are these spaces homotopy equivalent? Justify your answer.
- 4. Let M be an n dimensional manifold. $D^n \subset M$ an n disk embedded in a locally Euclidean neighborhood. Let $\overline{M} = M D^n$ and $f: S \to \overline{M}$ the inclusion of the n-1 sphere into $\partial \overline{M}$.
 - (a) Prove that $H_{n-1}(f) = 0$ if M is orientable.
 - (b) Prove that $H_{n-1}(f)$ is a injection if M is not orientable.
- 5. Use the Mayer-Vietoris sequence to compute the homology groups of $S^3 K$ where K is a knot in S^3 i.e. an embedding of S^1 in S^3 .
- 6. Describe a CW structure on $\mathbb{R}P^n$ and use it to compute $H_*(X; \mathbb{Z}_2)$.