Topology Qualifying Exam

Mathematics Program CUNY Graduate Center

Sept 1st 2011

Instructions: Do at least 8 problems in all, with exactly two problems from Part I and at least two problems from Parts II & III each. Please justify your answers.

Part I

- 1. (a) Show that a compact subset of a Hausdorff space is closed.
- (O(b) Show that a contractible space is path connected.
- 2. (a) Let int(A) denote the interior of a set $A \subset X$. Show that $int(A \cap B) = int(A) \cap int(B)$.
- (O(b) Prove that a finite product of connected spaces is connected.
- 3. (a) Let $A \subset B \subset \overline{A}$. Show that if A is connected then B is connected.
 - (b) Let $f: X \to Y$ be a bijective continuous function. Show that if X is compact and Y is Hausdorff, then f is a homeomorphism.
- 4. (a) Let A and B be disjoint compact subsets of a Hausdorff space X. Show that there exists disjoint sets U and V containing A and B, respectively.
 - (b) Prove that a finite product of locally path-connected spaces is locally path-connected.

Part II

- 1. (a) Let X and Y be topological spaces with basepoints $x \in X$ and $y \in Y$ respectively. Prove that $\pi_1(X \times Y, (x, y)) \simeq \pi_1(X, x) \times \pi_1(Y, y)$.
- (b) Compute $\pi_1(K \times T^2, (x, y))$ for $n \geq 2$, where K is the Klein's bottle and T^2 is the torus.
- 2. (a) Classify all covering spaces of $\mathbb{R}P^2 \times \mathbb{R}P^4$.
- $\mathbb{N}^{\mathbb{Q}}(b)$ Prove that every map $\mathbb{R}^{2} \to T^{2}$ is null homotopic.
- 3. Let M_g denote the closed orientable surface of genus g. Prove that M_p covers M_q if \mathcal{D} and only if p = n(q-1) + 1 where n is the number of sheets in the covering.
 - 4. Let M_g denote the closed orientable surface of genus g.
 - \(\sqrt{a} \) Compute $\pi_1(M_g, x)$ for some appropriate base-point $x \in M_g$.
 - (b) Prove that M_g is homeomorphic to M_h if and only if g = h.
 - 5. Let X be a CW complex with one 0-cell, three 1-cells a, b, c and two 2-cells e and f, with attaching maps given by the words ab^{-2} and cab^2 respectively.
 - (a) Compute $\pi_1(X, x)$ with some appropriate base-point x.
 - (b) Using the fundamental group to compute $H_1(X; \mathbb{Z})$.
 - 6. (a) Let Y be a finite CW complex and $p: X \to Y$ be an n-sheeted covering space. Show that $\chi(X) = n \chi(Y)$.
 - (b) Let Y be a finite CW complex and $p : \mathbb{R}P^{2n} \to Y$ be a covering map. Prove that f is a homeomorphism.

Part III

- 1. Let X be a closed surface given by the identification of sides of an octagon using the word $cdbabc^{-1}a^{-1}d$.
- (a) Describe the CW structure on X given by this description.
- (b) Compute the cellular chain complex and use it to compute $H_*(X; \mathbb{Z})$.
- 5 (c) Identify the surface.
- 2. Compute $H_*(\mathbb{R}P^5; \mathbb{Z})$ and $H_*(\mathbb{R}P^5; \mathbb{Z}_2)$. 3. Let $X = S^1 \vee S^1 \vee S^2$ and $Y = T^2$.
- (a) Compute the homology and cohomology groups of X and Y with $\mathbb Z$ coefficients. Are they the same?
- (b) Compute the cohomology rings of X and Y.
- 5 (c) Are the spaces homeomorphic? Are the spaces homotopy equivalent? Explain.
- 4. (a) Let M be a closed n-manifold and let $x \in M$. Prove that $H_n(M, M \{x\}; R) =$
- (b) Let M be a closed, orientable n-manifold. Prove that $H_{n-1}(M;\mathbb{Z})$ is free. You can assume that the homology groups of M are finitely generated.
- 5. Use Mayer-Vietoris sequence to compute the homology groups of $S^3 K$ where K is a knot i.e. an embedding of S^1 in S^3 .
- 6. Use Poincare duality to show that any odd dimensional manifold has zero Euler characteristics (Hint: Treat the non-orientable case differently).

THY THEY

- I Let I be a closed surface, given by the identification of sides of an oclassic, using the
 - amiliar the CW structure on X given by this description.
 - - o (u) Identity the surface.
 - Ack Pulling H. (RP 17) and M. (NUP 25).
 - The N band Province of the Province of
- (a) Compute the homology and cohomology groups of X and V with 5 coefficients

 Are they the same *
 - (b) Compute the community sings of X and Y.
- of the the spaces homeomosphie? Are the spaces lumnotopy equivalent? Lypulate
- (a) bet M be a closed a-manifold and let $x \in M$. Frows that $M_n(M,M-|x|)$
- (b) Let M be a closed orientable n-manifold. Prove that H_{new} (M; Z) is ires. You can assume that the boundogs groups of M as deniedly generally.
- 5. Use Mayer Victoris sequence to compute the homology groups of S² K where he shall be known i.e. an embedding of S¹ in S².
- 6. Use Poincare duality to show that any add dimensional manifold has zero Euler classes differently).