Topology Qualifying Exam May 25, 2010 Mathematics Program CUNY Graduate Center

Instructions: Do at least two problems from each part, and at least eight problems overall.

Part I

that I've communities at 'l' ded'

- 1. Let $\{X_{\lambda}\}$ be a family of spaces, $p_{\alpha}: \prod X_{\lambda} \to X_{\alpha}$ any one of the projection maps.
 - (a) Is p_{α} an open map? Explain.
 - (b) Is p_{α} a closed map? Explain.
 - (c) Is p_{α} a quotient map? Explain.
- 2. Let $f: X \to Y$ be a continuous map that is onto.
 - (a) Does X connected imply Y connected? Explain.
 - (b) Does X contractible imply Y contractible? Explain.
 - (c) Does X metrizable imply Y metrizable? Explain.
- 3. (a) Prove: X compact and Hausdorff implies X is normal.
 - (b) Give an example of a compact space which is not normal. Explain.
 - (c) Give an example of a Hausdorff space which is not normal. Explain.

Threfavings widtement Y has X sat As A 12 x 12 y v 2 v 22) - Y has 22 x 240 - X has X

4. Prove either the Baire category theorem or the Tychynoff theorem.

Part II

- 1. (a) Compute $\pi_1(K)$, where K is the Klein bottle, and prove that $\pi_1(K)$ has a subgroup isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$ by showing that there is a covering $T^2 \to K$, where T^2 is the 2-torus (orientable surface of genus 1).
 - (b) Describe the universal covering space of K and prove that any map $S^2 \to K$ is nullhomotopic.
- 2. Let X and Y be spaces with basepoints $x_0 \in X$, $y_0 \in Y$ and suppose $X \times Y$ is simply connected.
 - (a) Prove: X and Y are both simply connected.
 - (b) Prove: $X \vee Y$ is simply connected where $X \vee Y$ is the one point union of X and Y. Assume there are open neighborhoods $U \subset X$, $V \subset Y$ of x_0 , y_0 , respectively such that U is contractible, rel x_0 , to x_0 and V is contractible, rel y_0 , to y_0 .
- 3. (a) Find a space whose fundamental group is free on n generators.
 - (b) Using covering space theory, prove that every subgroup of the free group on n generators is a free group.
- 4. Let $S^1 \subset \mathbf{R}^3$ be an embedding (inclusion of a subspace) which is 'unknotted', for example take S^1 to be the unit vectors in the xy-plane. Compute $\pi_1(\mathbf{R}^3 S^1)$.

Part III

- 1. Let X and Y be CW-complexes with basepoints $x_0 \in X$, $y_0 \in Y$. Suppose that the reduced homology of $X \times Y$ is trivial. Prove that the reduced homology of X, Y, and $X \vee Y$ are trivial.
- 2. Let $X = \mathbb{C}P^3 \times S^2$ and $Y = (S^2 \vee S^4 \vee S^6) \times S^2$. Are X and Y homotopy equivalent? Why or why not?

- 3. Prove that an even dimensional sphere cannot be a topological group (a topological group is a group G which is a topological space such that the map $G \times G \to G$ given by $(g,h) \mapsto gh^{-1}$ is continuous).
- 4. Compute $H_i(\mathbf{R}P^3 \times T^2; A)$ and $H^i(\mathbf{R}P^3 \times T^2; A)$ as abelian groups, for all $i \geq 0$, when $A = \mathbf{Z}$, \mathbf{Q} , $\mathbf{Z}/2\mathbf{Z}$, and $\mathbf{Z}/3\mathbf{Z}$. Here T^2 is the 2-torus.

- Frove that set even dimensional aphere cannot be a topological group (a topological group (a topological provided is a topological space such that the map $G \times G \to G$ given by $G \times G \to G$ given by $G \times G \to G$.
- A = Z, G, Z/2Z, and Z/3Z. Here T^2 is the 2-torus.