TOPOLOGY QUALIFYING EXAM MAY 18, 2007

Instructions. Answer at least two questions from each of the three parts and at least eight questions overall.

PART I

(1) True or False?

(a) Let S^n denote the *n*-dimensional sphere. S^n is connected if and only if n > 0.

(b) The continuous image of path-connected space is path-connected.

(c) The continuous image of a Hausdorff space is Hausdorff.

(d) The continuous image of a metrizable space is metrizable.

(e) The 3-sphere is homeomorphic to the one-point compactification of \mathbb{R}^3

(f) Let $\pi : \mathbb{R}^2 \to \mathbb{R}$ be the map $\pi(x, y) = x$. The map π is a quotient space mapping.

(g) Let A' denote the transpose of the matrix A and let I_n denote the n-by-n identity matrix. Let O(n) denote the orthogonal group, i.e. the subspace $\{A \in \operatorname{Mat}_{nn}(\mathbb{R}) : AA' = I_n\}$. O(n) is compact.

(h) Let A' denote the transpose of the matrix A and I_n the n-by-n identity matrix. Let O(n) be the orthogonal group. By definition $O(n) = \{ \operatorname{Mat}_{nn}(\mathbb{R}) : AA' = I_n \}$. O(n) is compact.

(i) Let $A \subset X$ and $B \subset Y$. Let $\overline{A} \subset X$, $\overline{B} \subset Y$, $\overline{A \times B} \subset X \times Y$. $\overline{A \times B} = \overline{A} \times \overline{B}$

(j) The analogous problem with closure replaced by interior.

(2) State and prove one of the following.

- (a) Let f be a continuous, real-valued, function defined on a non-empty, compact, connected space. Prove or disprove: the image of f is a closed interval.
- (b) The Cantor set is nowhere dense.

(3) State and prove one of the following.

(a) Ascoli's Theorem.

(b) The Baire Category Theorem.

- (c) The contraction mapping theorem.
- (4) Let X be a metric space containing a countable, dense, subset. Prove that X has a countable basis of open sets.
- (5) Let X be a space and R an equivalence relation on X. Let Y = X/R be the set of equivalence classes and $\pi : X \to Y$ the natural onto map. Give Y the quotient topology inherited from X via π .
 - (a) Show that a map $f: Y \to Z$ is continuous if and only if $f \circ \pi: X \to Z$ is continuous.
 - (b) Show by example that even when X is Hausdorff Y need not be.
- (6) Let X be the product of the indexed family $\{X_{\alpha}\}_{{\alpha}\in I}$ of non-empty topological spaces.
 - (a) Show that X is Hausdorff if and only if each X_{α} is.
 - (b) Show that X is path-connected if and only if each X_{α} is.

PART II

- (1) Compute the fundamental group of $P_3(\mathbb{R})$, the 3-dimensional projective space.
- (2) Compute the fundamental group of the space obtained from the 2-sphere by identifying the 'north and south poles.'
- (3) Describe, up to equivalence, all covering spaces of the punctured complex plane, $\mathbb{C} \{0\}$.
- (4) Describe, up to equivalence, the connected covering spaces of $X \times X$ where X is the projective plane. Among these, how many homeomorphism types are there? Explain.
- (5) Let X and Y be spaces each homeomorphic to the circle. Let W be the one point union (= $X \lor Y$, the 'wedge product' of X and Y). Let P be the product, $X \times Y$, of X and Y. Describe the fundamental groups of W and P. Are they isomorphic? Proof?

PART III

(1) Let $X = P_2(\mathbb{C})$, complex projective 2-space and Y = the one-point union of S^2 and S^4 . Prove or disprove that for each n, $H_n(X,\mathbb{Z}) \cong H_n(Y,\mathbb{Z})$.

- (2) Let $f: S^4 \to S^4$ be defined by $f(x_0, x_1, x_2, x_3, x_4) = (-x_4, x_2, -x_3, -x_1, x_0).$ Calculate the degree of f.
- (3) Let X be a CW-complex having exactly 5 cells, one p-cell for each $p \in \{0, 1, 3, 5, 8\}$. Describe as completely as you can the homology groups, $H_i(X, Z)$. What can you say about its fundamental group?
- (4) Choose one of the following.
 - (a) Sketch the calculation of $H_p(S^n)$ (all p and n.)
 - (b) Assuming relevant facts (but state them clearly) about S^n and $H_p(S^n)$, sketch the calculation of the groups $H_p(S^n \times S^m)$ (all p, n and m).
- (5) Compute the homology groups of $(S^1 \times S^1) \vee S^3$, the 'wedge product' of the torus and a 3-sphere.
- (6) Let S_g denote the orientable surface of genus g. (a) $H_p(S_g, Z) = ?$ (all p)

 - (b) Sketch the proof.

- (3) Let X be a CW-complex having exactly 5 calls, one pecal for each p ∈ {0, 1, 3, 5, 8}. Describe as completely as you can the homalogy groups, H₁(X, Z). What can you say about its himdemental group;
 - (4) Choose one of the following:

(a) Skutch the calculation of H (S") (all y and za.

- (b) Assessing relevant facts (but state them elegily) about Stand of the groups and Halls' as St. (57), sketch the calculation of the groups
- (5) Compute the homology groups of (5' x 5') v 5", the 'wedge product of the towns and a 3-spiners.
 - (6) Let S, denote the priestable surface of genus o.
 - a Hg $(Z_n, Z) = (aH p)$
 - Journal of the server.