Topology Qualifying Exam Spring 2002

May 21, 2002

Instructions. Do at least eight problems; at least one problem from each part.

Part I

- 1. State and prove either
 - (a) the Baire category theorem; or
 - (b) the contraction mapping theorem.
- 2. Show that the product of connected spaces is connected.
- 3. (a) Prove that the closed unit interval is a connected topological space.
 - (b) Show that the intervals are the connected subsets of the real line. (Here, 'interval' means any set which contains the entire closed interval between any pair of its points.)
- 4. (a) Show that a compact subspace of a Hausdorff space is closed.
 - (b) Is the Hausdorff assumption really necessary? proof?
- 5. Let X be a compact metric space. Show that any sequence has a convergent subsequence.
- 6. Let A be a non-empty subset of the metric space X and define $f(x) = \inf\{d(x,a) \mid a \in A\}$. Show that f(x) = 0 if and only if $x \in \overline{A}$.

Part II

- 1. What is the fundamental group of
 - (a) S^n for all $n \ge 1$.
 - (b) $P_n(\mathbb{R})$ for all $n \geq 1$.
 - (c) $\mathbb{R}^n \{0\}$ for all $n \geq 2$.
 - (d) The torus.
 - (e) The Klein bottle.
- 2. Give a detailed statement of and sketch the proof of the following.
 - (a) The *n*-sphere is the universal covering space of $P_n(\mathbb{R})$ for all $n \geq 2$.
 - (b) The torus is a 2-sheeted covering space of the Klein bottle.
 - (c) The plane is the universal covering space of the Klein bottle
- 3. Use the Van-Kampen theorem either
 - (a) to calculate the fundamental group of the Klein bottle; or
 - (b) to prove that, when X is path-connected, $\Sigma(X)$ is simply connected.
- 4. Let $f: P_2(\mathbb{R}) \to \mathbb{C} \{0\}$ be a continuous function. Show that f has a continuous square root; i.e. there is a continuous $g: P_2(\mathbb{R}) \to \mathbb{C} \{0\}$ such that $\forall \in P_2(\mathbb{R}), g(x)^2 = f(x) \in \mathbb{C}$.
- 5. For sufficiently nice base spaces, B, the category of B's covering spaces is equivalent to the category of G-sets where G is the fundamental group of B.
 - (a) Show that, via this equivalence, a covering space of B is pathwise connected if and only if the corresponding G-set has only one G-orbit.
 - (b) What is the covering space corresponding to a 2 element G-set on which G acts trivially?

Part III

- 1. State carefully and sketch the proof of the 'suspension theorem' which relates the homology of X and ΣX .
- 2. The map $z \to z^2 : \mathbb{C} \longrightarrow \mathbb{C}$ extends to a continuous self-map of the space $\mathbb{C} \cup \{\infty\}$. Thus we have a self map of S^2 since $\mathbb{C} \cup \{\infty\} \approx S^2$. Calculate its degree.
- 3. Let $X = (X, \{X_n\}_{n\geq 0})$ be a CW complex having exactly 5 cells; one n-cell for each of the dimensions $\{0, 1, 3, 5, 6\}$.
 - (a) Say as much as you can about the groups $H_p(X)$.
 - (b) Give two examples of such complexes having non-isomorphic homology.
- 4. Let $A \subset X$.
 - (a) Suppose X is path-connected but that A is not. What can you say about $H_1(X, A)$?
 - (b) Suppose, further, that X is contractible. Now what?
- 5. Let A be a retract of X.
 - (a) Show that the inclusion map of A in X induces a one-to-one homomorphism in homology.
 - (b) By considering the exact sequence for the pair (X, A), show that, for all p

$$0 \longrightarrow H_p(A) \longrightarrow H_p(X) \longrightarrow H_p(X,A) \longrightarrow 0$$

- is an exact sequence.
- (c) Show that all these short exact sequences are (left-) split and hence that $H_p(X) \cong H_p(A) \oplus H_p(X, A)$.
- 6. Let X be the oriented surface of genus 2 (i.e. the connected sum of the torus with itself).
 - (a) $H_p(X) = ?$
 - (b) Justify your answer to a.

7. Consider a CW-complex. Prove that the group of n-dimensional cycles of the cellular chain complex is isomorphic to the n-th homology of the n-skeleton.