

MTH 306 History of Math, Fall 2025

For Wed Nov 12th

- (1) Read handout 11.

HW9 Due Wed Nov 17th

- (1) For $a \in \mathbb{C}$ let h_a denote a half turn about a . For any straight line l , let r_l denote reflection in l .
 - (a) What is $r_l r_m$ if (i) l and m intersect, or (ii), l and m are parallel?
 - (b) Show that $r_l r_m = r_m r_l$ if and only if l and m are equal or orthogonal.
 - (c) Show that $h_a r_l = r_l h_a$ if and only if a lies on l .
 - (d) Show that $h_a h_b = h_c h_a$ if and only if a is the midpoint of bc .
 - (e) Show that $h_a r_l = r_l h_b$ if and only if l is the perpendicular bisector of bc .
 - (f) Under what circumstances does $h_a h_b h_c h_d = 1$?
 - (g) Under what circumstance does $r_l r_m = r_n r_l$?
- (2) A Möbius map is a map $f: \mathbb{C} \cup \{\infty\} \rightarrow \mathbb{C} \cup \{\infty\}$ of the form $z \mapsto \frac{az+b}{cz+d}$, where $ad - bc \neq 0$.
 - (a) Show that every Möbius map is the composition of maps of the form $z \mapsto 1/z$, $z \mapsto z + a$ and $z \mapsto az$, $a \in \mathbb{C}$.
 - (b) Show that Möbius maps take circle and straight lines to circles and straight lines, not necessarily respectively.
 - (c) Let (a, b, c) be an ordered triple of distinct points in $\mathbb{C} \cup \{\infty\}$. Show that there is a unique Möbius map sending $a \mapsto \infty$, $b \mapsto 0$ and $c \mapsto 1$. Deduce that for any two ordered triples of distinct points, there is a map taking the first triple to the second.
- (3) (a) Let γ_1 and γ_2 be two circles or straight lines described by the equations
$$A_i|z|^2 + B_i z + \overline{B_i} \bar{z} + C_i = 0,$$
for $i = 1, 2$, where $A_i, C_i \in \mathbb{R}$ and $|B_i|^2 > A_i C_i$. Show that γ_1 and γ_2 cross orthogonally if and only if
$$B_1 \overline{B_2} + \overline{B_1} B_2 = A_1 C_2 + A_2 C_1.$$
- (b) Use 1(a) and 2(a) to show that Möbius maps take orthogonal circles and straight lines to orthogonal circles and straight lines.