

MTH 306 History of Math, Fall 2025

For Mon Nov 3rd

- (1) Read handout 10.

HW8 Due Wed Nov 12th

- (1) Determine the geometric effect on the complex plane of the following transformations.
 - (a) $f(z) = z + a$, where $a \in \mathbb{C}$.
 - (b) $f(z) = e^{i\theta}z$, where $\theta \in [0, 2\pi)$.
 - (c) $f(z) = \bar{z}$.
 - (d) $f(z) = \bar{z} + a$ for $a \in \mathbb{R}$.
- (2) (a) Show that every isometry of \mathbb{R}^2 may be written in the form $z \mapsto e^{i\theta}z + a$ or $z \mapsto e^{i\theta}\bar{z} + a$, for $\theta \in [0, 2\pi)$ and $a \in \mathbb{C}$.
(b) Classify isometries in terms of θ and a .
- (3) For each of the following pairs of transformations, calculate f^{-1} , $f \circ g$ and $f \circ g \circ f^{-1}$, and describe their geometric effects.
 - (a) $f(z) = e^{i\theta}z$, $g(z) = z + a$, where $\theta \in (0, 2\pi)$ and $a \in \mathbb{C} \setminus \{0\}$.
 - (b) $f(z) = z + a$, $g(z) = e^{i\theta}$, where $\theta \in (0, 2\pi)$ and $a \in \mathbb{C} \setminus \{0\}$.
 - (c) $f(z) = e^{i\theta}$, $g(z) = \bar{z}$, where $\theta \in (0, 2\pi)$.
 - (d) $f(z) = \bar{z}$, $g(z) = e^{i\theta}$, where $\theta \in (0, 2\pi)$.
- (4) (a) Show that the general equation of a straight line in \mathbb{C} is given by $Bz + \bar{B}\bar{z} + C = 0$, where $B \in \mathbb{C} \setminus \{0\}$ and $C \in \mathbb{R}$.
(b) Show that the general equation of a circle in \mathbb{C} is given by $A|z|^2 + Bz + \bar{B}\bar{z} + C = 0$, where $A, C \in \mathbb{R}$, $B \in \mathbb{C}$, $A \neq 0$ and $|B|^2 > AC$. Where does the condition $|B|^2 > AC$ come from?
[Hint: in (a) write the equation for a straight line in \mathbb{R}^2 , and use $x = (z + \bar{z})/2$ and $y = i(\bar{z} - z)/2$. In (b) use $(z - c)(\bar{z} - \bar{c}) = |z - c|^2$ to define the equation of a circle of center c .]
- (5) Let $A \subseteq \mathbb{R}^2$. The subgroup $\text{stab}(A)$ consists of all isometries f such that $f(A) = A$.
 - (a) Explicitly identify $\text{stab}(0)$ and $\text{stab}(\mathbb{R})$.
 - (b) Use conjugation to identify $\text{stab}(w)$ and $\text{stab}(L)$, for w a point and L a line.
 - (c) Explicitly identify $\text{stab}(\{0, 1\})$. Is it equal to $\text{stab}(0) \cap \text{stab}(1)$?