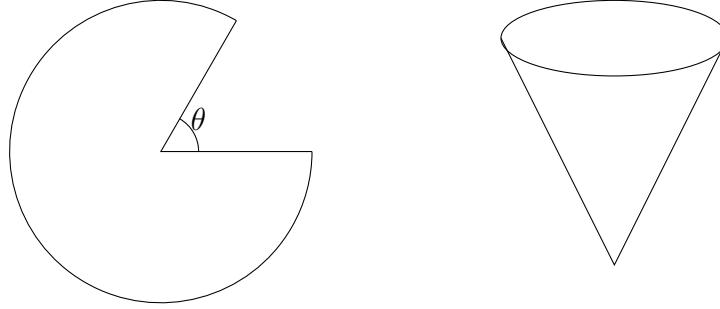


Math 231 Calculus 1 Fall 25 Sample Midterm 3

(1) Consider the function $f(x)$ defined by the following graph.

- (a) Label all regions where $f'(x) < 0$.
- (b) Label all regions where $f'(x) > 0$.
- (c) What is $\lim_{x \rightarrow \infty} f(x)$?
- (d) What is $\lim_{x \rightarrow -\infty} f'(x)$?
- (e) What is $\lim_{x \rightarrow \infty} f''(x)$?
- (f) Sketch a graph of $f'(x)$ on the figure.
- (g) Sketch a graph of $\int_{-5}^x f(t)dt$ on the figure.
- (h) Label the approximate locations of all points of inflection.


(2) Consider the function

$$f(x) = e^{9-x^2}$$

- (a) Find all vertical and horizontal asymptotes of the function.
- (b) Find all critical points of the function.
- (c) Determine the intervals where $f(x)$ is increasing and decreasing.
- (d) Find the inflection points.
- (e) Determine the intervals where $f(x)$ is concave up and concave down.
- (f) Use the 2nd derivative test to attempt to identify all local maxima and minima.
- (g) Sketch the function and label all relative maxima and minima.

(3) Find the point on the line $y = 2 - x$ which is closest to the point $(-2, -1)$.

(4) A circular piece of paper of radius R has a sector removed of angle θ , and the remainder is folded into a cone shaped cup. Which angle θ maximizes the volume?

(5) Compute the following limits. Show all work.

(a)

$$\lim_{x \rightarrow -2} \frac{x^2 + x - 6}{3x^2 + 4x - 4}$$

(d)

$$\lim_{x \rightarrow 2} \frac{x^2 - 4}{1/2 - 1/x}$$

(b)

$$\lim_{x \rightarrow 0} \frac{\tan 3x}{4x}$$

(e)

$$\lim_{x \rightarrow 0} \frac{\tan^{-1}(2x)}{\sin^{-1}(3x)}$$

(c)

$$\lim_{x \rightarrow 4} \frac{\sqrt{x} - 2}{x - 4}$$

(f)

$$\lim_{x \rightarrow \infty} \frac{x^2 + 1}{e^{\sqrt{x}}}$$

(g)

$$\lim_{x \rightarrow 1/2^-} \frac{\tan(\pi x)}{\ln(1 - 2x)}$$

(h)

$$\lim_{x \rightarrow \infty} \frac{2x^2 - 3x + 4}{\sqrt{x^4 - 2x^2 + 6}}$$

(6) Approximate the area under the graph of $y = 1/x$ between 2 and 4 using four rectangles. Use the right hand endpoints to find the heights of the rectangles. Can you say whether this is an under- or over-estimate?

(7) Evaluate the following

(a)

$$\int \frac{3x^2 - 2x + 4}{\sqrt[5]{x}} dx$$

(f)

$$\int \frac{1}{4 + x^2} dx$$

(b)

$$\int_{-2}^3 |x| dx$$

(g)

$$\int \frac{x}{1 + 4x^2} dx$$

(c)

$$\int_1^9 \frac{3}{\sqrt{x}} dx$$

(h)

$$\int \sin(3x) dx$$

(d)

$$\int_0^2 e^{-3x} dx$$

(i)

$$\int x \cos(2 + x^2) dx$$

(e)

$$\int_0^x \frac{1}{t + 3} dt$$

(j)

$$\int \frac{\cos(x)}{e^{\sin x}} dx$$

(8) Find

$$\frac{d}{dx} \int_0^{\sqrt{x}} e^{-t} \sin(t) dt$$

(9) A particle starting at the origin at time $t = 0$ moves along the x -axis with velocity $v(t) = (2t + 1)^{-3}$. Will the particle ever reach $x = 10$?