

Math 231 Calculus 1 Fall 25 Midterm 2a

Name: Solutions

- I will count your best 8 of the following 10 questions.
- You may use a calculator, and a US letter page of notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
	80	

Midterm 2	
Overall	

(1) (10 points) Find the derivative of the following functions.

(a) $f(x) = x^2 e^x$.

$$2xe^x + x^2 e^x$$

(b) $f(x) = \frac{\cos(x)}{\ln(x)}$.

$$\frac{\ln(x) \cdot (-\sin x) - \cos x \cdot \frac{1}{x}}{(\ln(x))^2}$$

(2) (10 points) Find the derivative of the function $f(x) = \sin^{-1}(1 - 3x^2)$.

$$\frac{1}{\sqrt{1 - (1-3x^2)^2}} \cdot -6x$$

(3) (10 points) Find the second derivative of the function $f(x) = \sqrt[3]{1-2x}$.

$$= (1-2x)^{1/3}$$

$$f'(x) = \frac{1}{3} (1-2x)^{-2/3} \cdot (-2)$$

$$f''(x) = -\frac{2}{9} (1-2x)^{-5/3} \cdot 4$$

(4) (10 points) Use implicit differentiation to find the tangent line to the curve given by the equation $3xy^2 + 2x^2y = 2$ at the point $(-2, 1)$.

$$3y^2 + 3x^2yy' + 4xy + 2x^2y' = 0$$

at $(-2, 1)$:

$$3 + -12y' - 8 + 8y' = 0$$

$$-4y' = 5$$

$$y' = -\frac{5}{4}.$$

$$y - 1 = -\frac{5}{4}(x + 2)$$

$$(5) \text{ Find the following limit: } \lim_{x \rightarrow 0} \frac{1 - e^{2x^2}}{1 - \cos(4x)}$$

$$\begin{aligned} & \stackrel{0/0}{=} \lim_{x \rightarrow 0} \frac{-e^{2x^2} \cdot 2x}{\sin(4x) \cdot 4} \stackrel{0/0}{=} \lim_{x \rightarrow 0} \frac{-e^{2x^2} \cdot 4x^2 - e^{2x^2} \cdot 2}{\cos(4x) \cdot 16} = -\frac{2}{16} = -\frac{1}{8} \end{aligned}$$

(6) (10 points) The area of a circular oil slick increases at the rate of 4m/min.
How fast is the radius increasing when the radius is 10m?

$$A = \pi r^2$$

$$\frac{dA}{dt} = \pi \cdot 2r \frac{dr}{dt}$$

$\uparrow \frac{dr}{dt}$

$$\frac{4}{4} = \frac{4}{2\pi r} = \frac{1}{\pi r}$$

10

(7) (10 points) Use linear approximation to estimate $\sqrt{24}$. What is the percentage error in your approximation?

$$f(x) = \sqrt{x}$$

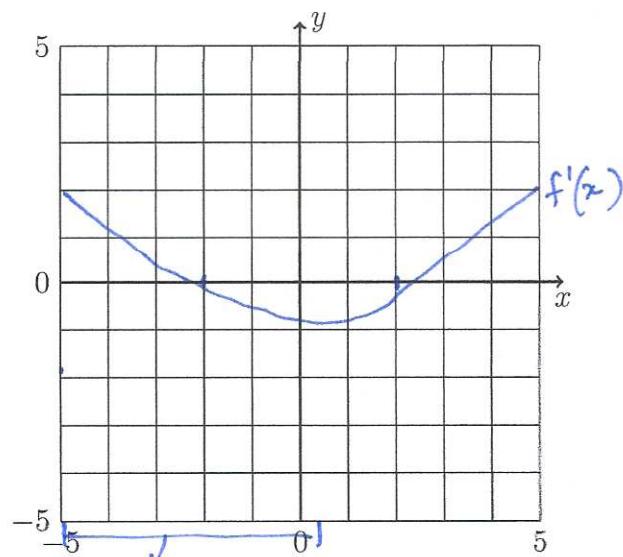
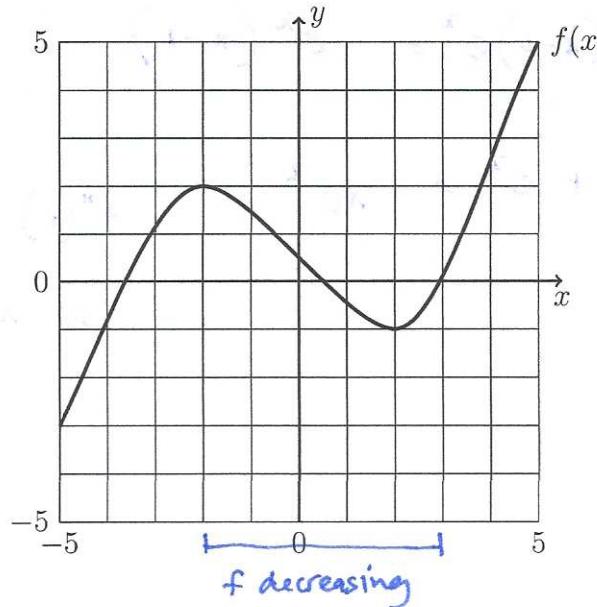
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f(24) \approx f(25) + f'(25) \cdot (-1)$$

$$5 + \frac{1}{2} \cdot \frac{1}{25} \cdot (-1) = 5 - \frac{1}{10} \Rightarrow 4.9$$

percentage error:

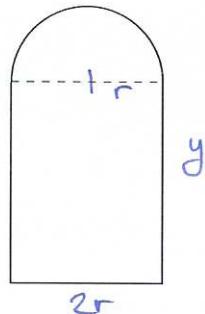
$$\frac{|4.9 - \sqrt{24}|}{\sqrt{24}} \times 100 \approx 0.0208\%$$



(8) Find the critical points for the function $f(x) = (x-2)e^x$ and use the second derivative test to classify them.

$$f'(x) = e^x + (x-2)e^x = e^x(x-1) \quad \text{critical point: } f'(x)=0 \\ x=1$$

$$f''(x) = e^x(x-1) + e^x = xe^x \quad f''(1) = e > 0$$

so $x=1$ is a local min


(9) (10 points) The graph of the function $f(x)$ is shown below. On the top set of axes mark where $f(x)$ is decreasing. On the lower set of axes sketch $f'(x)$, and then use this to find where $f(x)$ is concave down.

Concave down $\Leftrightarrow f''(x) < 0 \Leftrightarrow f'(x)$ decreasing

(10) A window is constructed in the shape of a rectangle with a semicircle attached to the top. If the total circumference of the window is 4m, what is the largest possible area?

$$A = 2ry + \frac{1}{2}\pi r^2$$

$$C = 2r + 2y + \frac{1}{2}2\pi r = 4$$

$$y = 2 - r(1 + \frac{\pi}{2})$$

$$A = 2r(2 - r(1 + \frac{\pi}{2})) + \frac{1}{2}\pi r^2$$

$$A = 4r - r^2(2 + \frac{\pi}{2})$$

$$\frac{dA}{dr} = 4 - 2r(2 + \frac{\pi}{2}) \quad \text{critical point} \quad \frac{dA}{dr} = 0 \quad r = \frac{2}{2 + \frac{\pi}{2}} \approx 0.5601$$

$$A = 4 \cdot \left(\frac{2}{2 + \frac{\pi}{2}}\right) - \left(\frac{2}{2 + \frac{\pi}{2}}\right)^2 \left(2 + \frac{\pi}{2}\right) \approx 0.1202$$