

Math 231 Calculus 1 Fall 25 Final a Part 1

Name: Solutions

- I will count your best 10 of the following 12 questions.
- You may use a calculator without CAS capabilities, and a US Letter page of notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
	100	

Final	
Overall	

(1) (10 points) Find the derivative of the following functions.

(a) $3x^4 - 2\sqrt[3]{x} + \frac{3}{\sqrt{x}}$

$$12x^3 - \frac{2}{3}x^{-\frac{2}{3}} + -\frac{3}{2}x^{-\frac{1}{2}}$$

(b) x^2e^x

$$2xe^x + x^2e^x$$

(2) (10 points) Find the derivative of the following functions.

(a) $\frac{\sin(x)}{3 - \ln(x)}$

$$\frac{(3 - \ln(x)) \cdot \cos(x) - \left(-\frac{1}{x}\right) \sin x}{(3 - \ln(x))^2}$$

(b) $\cos^{-1}(2x + 1)$

$$\frac{-1}{\sqrt{1 - (2x+1)^2}} \cdot 2$$

(3) (10 points) Find the derivative of the following functions.

(a) $\sqrt{\tan(\ln(x))}$

$$\frac{1}{2} \left(\tan(\ln(x)) \right)^{-\frac{1}{2}} \sec^2(\ln(x)) \cdot \frac{1}{x}$$

(b) $3y^4 - xy^2 = e^x$ (Use implicit differentiation to find y' implicitly.)

$$12y^3y' - y^2 - x2yy' = e^x$$

$$y' (12y^3 - 2xy) = e^x + y^2$$

$$y' = \frac{e^x + y^2}{12y^3 - 2xy}$$

(4) (10 points)

(a) State the definition of $f'(x)$ as a limit.(b) Use the limit definition of the derivative to find the derivative of $f(x) = \frac{1}{x}$. Do *not* use L'Hôpital's rule.

$$a) f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$$

$$b) f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

$$= \lim_{h \rightarrow 0} \frac{1}{h} \frac{x - (x+h)}{(x+h)x}$$

$$= \lim_{h \rightarrow 0} \frac{-h}{h(x+h)x} = \lim_{h \rightarrow 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}$$

(5) (10 points) Consider $f(x) = x^3 + 6x^2 + 2$.

(a) Find the derivative for $f(x)$, and the critical points.

$$f'(x) = 3x^2 + 12x$$

critical points, solve $f'(x) = 0$
 $3x(x+4) = 0$ $x = 0, -4$

(b) Find the equation of the tangent line at $x = 1$.

$$f'(1) = 15$$

$$y - 9 = 15(x - 1)$$

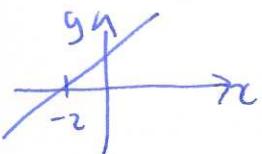
$$f(1) = 9$$

(c) Find the intervals for which $f(x)$ is decreasing.

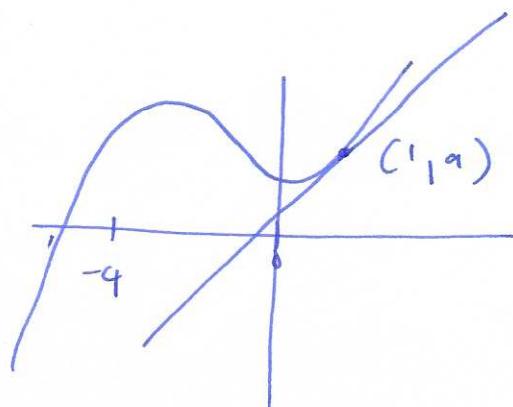
(d) Find the intervals for which $f(x)$ is concave up.

$$f''(x) = 6x + 12$$

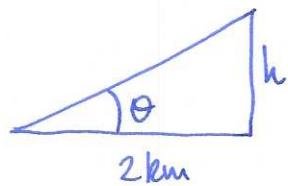
$$(-2, \infty)$$



(e) Sketch the graph of $f(x)$, and the tangent line at $x = 1$.



(6) (10 points) A hot air balloon rises vertically from a point on the ground 2km away. When you see it at angle $\pi/10$ radians, the rate at which the angle is increasing is 0.2 radians/sec. How fast is the balloon rising?



$$\tan \theta = \frac{h}{2}$$

$$\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{2} \frac{dh}{dt}$$

$$\frac{dh}{dt} = 2 \sec^2\left(\frac{\pi}{10}\right) \cdot 0.2 \approx 0.4422 \text{ km/s}$$

(7) (10 points) Find the following limits. Note: the possible answers for limits are a number, $+\infty$, $-\infty$ or "does not exist" (DNE). Justify your answers.

(a) Find $\lim_{x \rightarrow 3} \frac{x^2 - x - 6}{2x^2 - 7x + 3}$.

$$\text{QH} = \lim_{x \rightarrow 3} \frac{2x-1}{6x-7} = \frac{5}{45} = 1$$

(b) Find $\lim_{x \rightarrow 0} \frac{4x}{\sin 3x}$.

$$\text{QH} = \lim_{x \rightarrow 0} \frac{4}{3\cos(3x)} = \frac{4}{3}$$

(c) Find $\lim_{x \rightarrow +\infty} \frac{2x - 3x^2}{e^{2x}}$.

$$\text{QH} = \lim_{x \rightarrow +\infty} \frac{2-6x}{2e^{2x}} \xrightarrow{\text{QH}} \lim_{x \rightarrow +\infty} \frac{-6}{4e^{2x}} = 0$$

(8) (10 points) Evaluate the following integrals.

(a) $\int \left(2x^4 - 3\sqrt[3]{x} - \frac{2}{x} + \frac{1}{\sqrt{x}} \right) dx$

$$\frac{2}{5}x^5 - 3 \cdot \frac{3}{4}x^{4/3} - 2\ln|x| + 2x^{1/2} + C$$

(b) $\int_0^2 e^{-3x} dx$

$$u = -3x$$

$$\frac{du}{dx} = -3$$

$$\int_0^{-6} e^u \frac{dx}{du} du = -\frac{1}{3} \left[e^u \right]_0^{-6} = -\frac{1}{3} (e^{-6} - 1)$$

$$\approx 0.3725$$

(9) (10 points) Evaluate the following integrals.

(a) $\int 3x \cos(4x^2) dx$

$$u = 4x^2$$

$$\frac{du}{dx} = 8x \quad \int 3x \cos(u) \frac{dx}{du} du = \int 3x \cos(u) \frac{1}{8x} du$$

$$= \frac{3}{8} \int \cos(u) du = \frac{3}{8} \sin(u) + C = \frac{3}{8} \sin(4x^2) + C$$

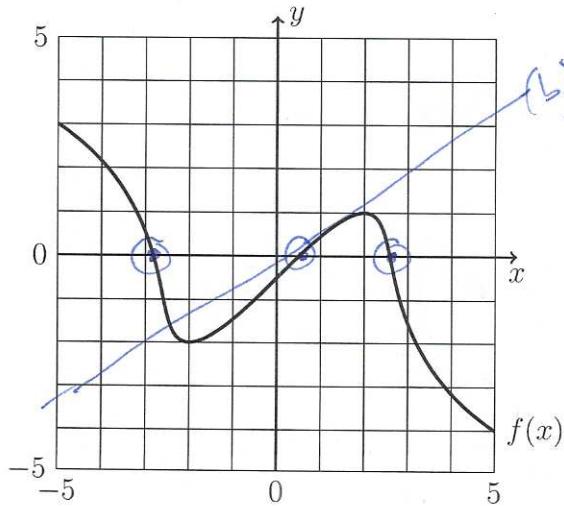
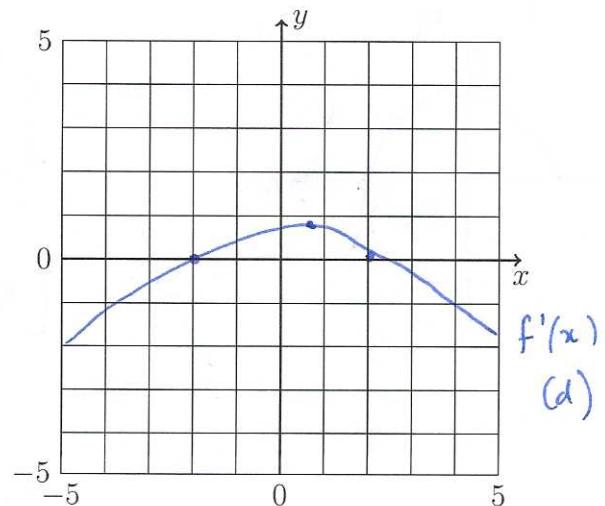
(b) If $\int_0^8 f(x) dx = 7$ and $\int_4^8 f(x) dx = 3$, find $\int_0^4 f(x) dx$.

$$\int_0^4 f(x) dx + \int_4^8 f(x) dx = \int_0^8 f(x) dx$$

$$3 \qquad \qquad \qquad 7$$

$$\int_0^4 f(x) dx = 4$$

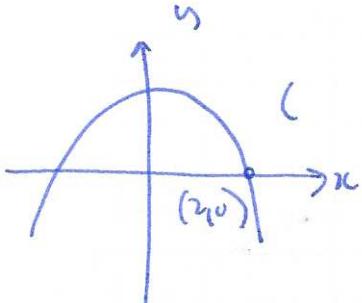
(10) (10 points) Consider the function $f(x)$ determined by the graph below.



(a) Label the roots of $f(x)$ on the graph above. $\textcircled{1}$
 (b) On the graph above, sketch the tangent line at $x = 1$.
 (c) List all the critical points of $f(x)$. $-2, +2$
 (d) Sketch $y = f'(x)$ on the right hand graph.
 (e) Estimate the intervals where $f(x)$ is concave down. $(\frac{1}{2}, \infty)$

(11) (10 points) Find the area below the graph $f(x) = 12 - 3x^2$ which lies in the first quadrant.

$$= 3(4-x^2)$$

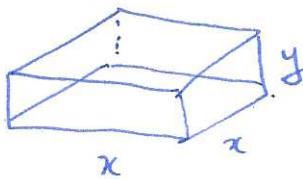


$$\int_0^2 12 - 3x^2 \, dx$$

$$= \left[12x - x^3 \right]_0^2$$

$$= 24 - 8 = 16$$

(12) (10 points) You wish to build a metal box with a square base and top. The metal for the top and bottom costs $\$2/\text{ft}^2$, and the metal for the sides costs $\$1/\text{ft}^2$. Find the dimensions of the box which minimize the cost, if the volume of the box should be 24ft^3 .



$$V = 24 = x^2 y \Rightarrow y = \frac{24}{x^2}$$

$$C = 2x^2 \cdot 2 + 4xy$$

$$C = 4x^2 + 4x \cdot \frac{24}{x^2} = 4x^2 + \frac{96}{x}$$

$$\frac{dC}{dx} = 8x - \frac{96}{x^2}$$

critical pt : $\frac{dC}{dx} = 0$:

$$8x^3 = 96$$

$$x^3 = 12$$

$$x = \sqrt[3]{12} = 2\sqrt[3]{3}$$

$$y = \frac{24}{12} = 2$$