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(c) Give the intervals for which f is concave up, and for which it is concave
down.

(d) Decide which critical points are maxima, minima, or neither.

(e) Sketch the graph of f(z).

@Consider the function f(z) defined by the following graph.
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(a) Label all regions where f(z) < 0.
(b) Label all regions where f'(x) > 0.
(c) Sketch a graph of f'(z) on the figure.

3
(6) Consider f(z) = 52
(a) Sketch the graph of f(z) showing any asymptotes.
(b) Find the slope of the tangent line at z = —1, and write down the equation
for the tangent line.
(c) Sketch the tangent line at © = —1 on your graph.

(7) Let f(z) = L — 2. Find the derivative using the limit definition of the deriv-

ative. Do not use L'Hopital’s rule. Show all your work.
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(8) Use implicit differentiation to find the tangent line to the curve given by the
equation 2°y* + 3z — 2y = 5 at the point (-2, —1).

ketch the graph of / f(t)dt, where f(z) is shown below.
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(10) A region in the plane is bounded by the w-axis, the graph y = 9 — 22, and
the lines z = —1 and z = 1.
(a) Sketch the region (shading it in) and label the boundaries.
(b) Find the area of the region.

(11) You blow up a spherical balloon at the rate of 2in® /s. How fast is the volume
growing when r = 6in? (The volume of a sphere is V = %m"s.)

(12) Use linear approximation to estimate </26. Use you calculator to find the
exact value, and find the absolute and percentage errors.

(13) What’s the closest point on the line y = 2z + 4 to the point (2,-1)7




