Math 301 Introduction to Proof Fall 24 Midterm 1

Name: Solutions

- Start each question on a fresh sheet of paper. Staple together in numerical order at the end of the exam.
- (1) For each of the following statements, find two distinct elements in the truth set, and two distinct elements not in the truth set. (Indicate clearly which are which.)
 - (a) $\frac{a}{b} \in \mathbb{Z}$, where the universe is $\mathbb{Z} \times \mathbb{Z}$.
 - (b) $A \cup B = \mathbb{Z}$, where the universe is all subsets of \mathbb{Z} .
- (2) Consider the statement:

If x and y are real numbers with x < y then $x^2 < y^2$.

Which, if any, of the following substitutions give a counter example.

(a)
$$x = 1, y = 2$$
 (b) $x = -2, y = 1$ (c) $x = 1, y = -2$ (d) $x = 2, y = 1$

- (3) Write out a careful proof of the fact that the cube of any odd number is odd.
- (4) Prove or disprove the following statement: If $A \cap B = A \cap C$ then B = C.
- (5) Prove or disprove the following statement: If $a \mid b$ and $b \mid c$ then $a \mid c$.
- (6) Prove or disprove the following statement: $A (B \cup C) = (A B) \cup (A C)$.
- (7) Prove or disprove the following statement: If $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ then $A \subseteq B$.
- (8) State which of the following statements, are true, vacuously true, or false.
 - (a) For integers a, b, c and d, if $a \mid b$ and $c \mid d$ then $ab \mid cd$.
 - (b) If x is an integer with x² = 2 then x is positive.
 (c) If x is a real number with x² = 2 then x is positive.
 - (d) If $\mathcal{P}(A) \cap \mathcal{P}(B) = \emptyset$ then $A \cap B = \emptyset$.
- (9) Write out a careful proof of the fact that if $a \mid b$ then $a^2 \mid b^2$.
- (10) Consider the following theorem and proof. Is the theorem correct? If it is not correct give a counterexample. Is the proof correct? If the proof is not correct, explain why it is not correct, and then give a correct proof.

Theorem. For any sets A and B, if $A \times A = A \times B$ then A = B.

Proof. Suppose $(a, a) \in A \times A$. Then as $A \times A = A \times B$, this implies that $(a, a) \in A \times B$, so $a \in B$, therefore A = B, as required.

Midterm 1	Overall	

```
MTI Solutions
(2) a) (1,1) (2,1) in both set (1,2) (1,3) not in both set
b) (9,2), (42) in buth act (4,0), (0, {13) but in buth set.
Q3 The If a is odd then 23 is odd (2+2).
Proof Suppose x is odd, then x = 2n+1 for some integer n. Thus x^2 = (2n+1)^3
= 8n3+12n2+6n+1= 2(4n3+6n3+5n)+1 which is old [].
lest False. counterexample: A= $, B= $, C= $13.
Q5 The If 1/6 and b/c then a/c.
Part If all then there is an integer m s.t. b= ma. If b|c then there is an integer a such that c= ub. Then c= ub = n.m.a, as n.m is an
integr, cis a multiple of a, so a/c. [].
    A - (Buc) = d
A - (Buc) = d
(A-B) \cup (A-c) = A \cup \{1\} = \{1\}
A - (Buc) = d
(A-B) \cup (A-c) = A \cup \{1\} = \{1\}
Q7 Thus If P(A) = P(B) then A=B.
Proof ASA so A & P(A). AS P(A) S P(B), A & P(B) but this means ASB,
as required D.
Q8 a) F b) VT c) F d) VT
Q9 This If all then a2/62.
Port If 9/6 then there is an integer c such that b=ac. Then b=ac2,
and c2 is an integer so a2 152 D.
```

COLO False. counto example, $A = \emptyset$, $B = \{1\}$.

Mistalles in proof include: (a,a) not arts/hong element of AXA, does it conside $A \times A = \emptyset$, only does $A \times A \subseteq A \times B$ of 15th directions.