- 1. Suppose $f: X \to Y$. Prove that
 - (a) If $A \subseteq B \subseteq X$, then $f(A) \subseteq f(B)$
 - (b) If $C \subseteq D \subseteq Y$, then $f^{-1}(C) \subseteq f^{-1}(D)$.
 - (c) For every $x \in X$, $f(\{x\}) = \{f(x)\}$.
- 2. Suppose $f: X \to Y$, and $A, B \subseteq X$. Prove that
 - (a) $f(A \cup B) = f(A) \cup f(B)$
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$
 - (c) Prove or disprove: $f(A) \cap f(B) \subseteq f(A \cap B)$
- 3. Suppose $f: X \to Y$, and $A, B \subseteq Y$. Prove that
 - (a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$ (b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$ (c) $f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B).$
- 4. Suppose $f: X \to Y$ and $B \subseteq Y$. Prove that
 - (a) $f[f^{-1}(B)] \subseteq B$.
 - (b) Prove or disprove: $B \subseteq f[f^{-1}(B)]$
 - (c) If f is onto, then $f[f^{-1}(B)] = B$
- 5. Suppose $f: X \to Y$. Prove that
 - (a) For all $A \subseteq X$, $A \subseteq f^{-1}[f(A)]$.
 - (b) Find a counterexample to the statement: For all $A \subseteq X$, $A = f^{-1}[f(A)]$
 - (c) If f is 1-1, then for all $A \subseteq X$, $A = f^{-1}[f(A)]$
 - (d) Suppose for all $A \subseteq X$, $A = f^{-1}[f(A)]$. Prove that f is 1-1.
- 6. Suppose $f: X \to Y$. Prove that
 - (a) If f is 1-1, then for all $A, B \subseteq X$, $f(A \cap B) = f(A) \cap f(B)$.
 - (b) Suppose that for all $A, B \subseteq X$, $f(A \cap B) = f(A) \cap f(B)$. Prove that f is 1-1.