Math 231 Calculus 1 Fall 24 Final a

Name:	Solutions

- \bullet I will count your best 10 of the following 12 questions.
- You may use a calculator without CAS capabilities, and a US Letter page of notes.

1	10	
2	10	
3	10	
4	10	-1
5	10	
6	10	
7	10	
8	10	
9	10	A.
10	10	an an Ed
11	10	
12	10	
	100	

Final	
Overall	

- (1) (10 points) Find the derivative of the following functions. (a) $2x^3-4\sqrt[3]{x}-\frac{2}{\sqrt{x}}$

$$6\chi^2 - \frac{4}{3}\chi^2 + \chi^2$$

(b) $x^2 \cos(x)$

(2) (10 points) Find the derivative of the following functions. (a) $\frac{e^x}{3-\ln(x)}$

(a)
$$\frac{e^x}{3 - \ln(x)}$$

$$\frac{\left(3-\ln(\pi)\right)e^{2}-\left(-\frac{1}{\pi}\right)e^{2}}{\left(3-\ln(\pi)\right)^{2}}$$

(b)
$$\sin^{-1}(2x+1)$$

(3) (10 points) Find the derivative of the following functions. (a) $\tan\left(\sqrt{\ln(x)}\right)$

4

(b) $2y^3 - xy^2 = e^x$ (Use implicit differentiation to find y' implicitly.)

$$6y^{2}y' - y^{2} - x \cdot 2yy' = e^{x}$$

$$y'(6y^{2} - 2xy) = e^{x} + y^{2}$$

$$y' = \frac{e^{x} + y^{2}}{6y^{2} - 2xy}$$

- (4) (10 points)
 - (a) State the definition of f'(x) as a limit.
 - (b) Use the limit definition of the derivative to find the derivative of $f(x) = \frac{1}{x}$. Do not use L'Hôpital's rule.

a)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(5) (10 points) Consider $f(x) = x^3 - 3x^2 - 2$.

(a) Find the derivative for f(x), and the critical points.

$$f'(x) = 3x^2 - 6x = 3x(x-2)$$
 cuitical punts $x = 0, 2$

(b) Find the equation of the tangent line at x = 1.

$$f'(1) = -83$$

 $f(1) = 1-3-2=-4$
 $y+4 = -36(x-1)$

(c) Find the intervals for which f(x) is increasing.

(d) Find the intervals for which f(x) is concave down.

$$f''(n) = 6n - 6$$

$$= 6(n - 1)$$

$$(-\infty, 1)$$

(e) Sketch the graph of f(x), and the tangent line at x = 1.

(6) (10 points) A leak from an oil tank on the edge of a straight shore forms a semicircular oil slick. If the area of the oil slick grows at $6m^2/\min$, how fast is the radius increasing when the radius is 5m?

regular provo (Military)

$$A = \frac{1}{2}\pi r^{2}$$

$$\frac{dA}{dt} = \pi r \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{6}{5\pi} \text{ m/min}$$

$$6 \qquad 5$$

(7) (10 points) Find the following limts. Note: the possible answers for limits are a number, $+\infty$, $-\infty$ or "does not exist" (DNE). Justify your answers.

(a) Find
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{3x^2 - 5x - 2}$$
. $= \lim_{x\to 2} \lim_{x\to 2} \frac{2x - 5}{6x - 5} = \frac{-1}{7}$

(b) Find
$$\lim_{x\to 0} \frac{3x}{\sin 4x}$$
. $=$ $\lim_{x\to 0} \frac{3}{\sin 4x} = \frac{3}{4}$

(c) Find
$$\lim_{x\to +\infty} \frac{3x-4x^2}{e^{3x}}$$
. = $\lim_{x\to +\infty} \frac{3-9x}{10^{3x}} = \lim_{x\to +\infty} \frac{-8}{10^{3x}} = 0$.

(8) (10 points) Evaluate the following integrals.

(a)
$$\int \left(3x^2 - 4\sqrt[3]{x} + \frac{3}{x} - \frac{1}{\sqrt{x}}\right) dx$$

$$x^{2} - 4.3x + 3ln|x| - 2x^{1/2} + c$$

(b)
$$\int_{0}^{3} e^{4x} dx$$
 $u = 4\pi$

$$\frac{du}{dx} = 4$$

$$\int_{0}^{12} e^{4x} dx dx = \frac{1}{4} \int_{0}^{12} e^{4x} dx = \frac{1}{4} (e^{4x} - 1)$$

(9) (10 points) Evaluate the following integrals.

(a)
$$\int x \sin(3x^2) dx$$

$$u = \frac{2}{3}x^2$$

$$\frac{du}{dx} = 6x$$

$$\int x \sin(u) dx du = \int x \sin(u) \frac{1}{6}x du = \frac{1}{6} \int \sin(u) du$$

$$= -\frac{1}{6} \cos(u) + c = -\frac{1}{6} \cos(3\pi x^2) + c$$

(10) (10 points) Consider the function f(x) determined by the graph below.

- (a) Label the roots of f(x) on the graph above. $-3, \frac{1}{2}, \frac{1}{2}$ (b) On the graph above, sketch the tangent line at x = 3.

- (c) List all the critical points of f(x). -2 | 2
 (d) Sketch y = f'(x) on the right hand graph.
 (e) Estimate the intervals where f(x) is concave up. (-2½ | 0) (3½ | 5)

(11) (10 points) Find the area below the graph $f(x) = 9 - x^2$ which lies in the first quadrant.

$$\int_{0}^{9} (9-a^{2}) dx =$$

$$\int_{0}^{7} 9-x^{2} dx = \left[9x - \frac{1}{3}x^{3} \right]_{0}^{3}$$

$$=$$
 27-9 = 18

(12) (10 points) You wish to build a rectangular bookcase with five shelves, as shown below. If you have 24m of planks, what are the dimensions of the largest area bookshelf you can make?

$$A = \chi (12-3\chi) = 12\chi - 3\chi^{2}$$

$$\frac{dA}{dn} = 12-6\chi \qquad \frac{dA}{dn} = 0 \implies \chi = 2$$

$$y = 6$$