Math 338 Linear Algebra Spring 22 Midterm 3a

Name: Séhk"h’a/Lj

e Do any 8 of the following 10 questions.
e You may use a calculator without symbolic algebra capabilities, but no notes.
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(1) Let A be the matrix A = {11 _64} ;

(a) Find the eigenvalues of A.
(b) What are the eigenvalues for A*? Explain your answer.
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(2) Let A be the same matrix as in Q1, i.e. A= [jl _64} .

(a) Find the eigenvectors for A.
(b) Diagonalize A, i.e. find matrices P and D such that P~'AP = D.
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(a) Write down a product of matrices which gives A*.
(b) Write down a product of ma.trlces which gives e’

) What can you say about e as ¢t — co?

(3) Let A be the same matrix as in Q1, i.e. A= [
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(4) Let S = {v1,Vva, vz} be a basis for R?, where

el [t - f]

Use the Gram-Schmidt process to find an orthonormal basis.
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(5) (a) Suppose A is an n x n matrix and A*> = A. What can you say about
det(A)?
(b) Suppose A is an n x n matrix and det(A) = 0. What can you say about
the eigenvalues of A7
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(6) Let B be the basis for R? given by

7= Bl

(a) Find a matrix which converts vectors written in the standard basis to
vectors written with respect to the basis B.

(b) Use your answer to (a) to write [2] (in the standard basis) as a linear

1
combination of vectors in 5.
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(7) (a) Write down a matrix A corresponding to an anticlockwise rotation of
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7/4 about the origin in R?.

(b) Write down a matrix B which expands R? by a factor of 2 in the 2-
direction, and also reflects across the z-direction.

(¢) Use your answers above to find a matrix which expands R* by a factor
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(a) Find the eigenvalues and eigenvectors for A.
(b) Can you diagonalize A? Explain.
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(9) Let J= |0 0 y|, where x and y may be either 0 or 1.
0 0 0
(a) What are the eigenvalues of A?
(b) What are the largest and smallest number of eigenvectors that A may

have?
(¢) Suppose A = PJP~!, for some invertible matrix P. Show that A* = 0.
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(10) Let A be a matrix with eigenvalues Ay = 1,\y = —1,A\3 = 2 and )y = —2,
and the following orthonormal eigenvectors

1 1 1 =1
N I 1 R ) P I,
Ul*i 1 ,’02*5 1 1113*5 1 » Vs 511
—1 J s 1
1
(a) Write the vector b = g with respect to the basis of eigenvectors. (Hint:

0

use the fact that the v; are orthogonal.)
(b) Use your answer above to find Ab with respect to the basis of eigenvec-
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