Math 338 Linear Algebra Spring 22 Midterm 3a

Name:	Solutions

- Do any 8 of the following 10 questions.
- You may use a calculator without symbolic algebra capabilities, but no notes.

1	10	
2	10	
3	10	
4	10	-
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	1.04
	80	

Midterm 3	
Overall	

(1) Let A be the matrix $A = \begin{bmatrix} 1 & 6 \\ -1 & -4 \end{bmatrix}$.

(a) Find the eigenvalues of A.

(b) What are the eigenvalues for A^k ? Explain your answer.

a)
$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 6 \\ -1 & -4 - \lambda \end{vmatrix} = (1 - \lambda)(-4 - \lambda) + 6 = \chi^2 + 3\chi + 2$$

 $\chi = -1, -2$
 $(\chi + 1)(\chi + 2)$

b) if
$$Av = \lambda v$$
 then $A(\lambda v) = \lambda(\lambda v)$.
 $\Delta v = \lambda^2 v = \lambda^2 v$ etc.

so eigenvalues for Ak are CI)k, (-2)k.

$$P \uparrow \qquad \uparrow P \\ IR^2 \longrightarrow IR^2 \\ IR^2 \longrightarrow IR^2 \\ D _3$$

- (2) Let A be the same matrix as in Q1, i.e. $A = \begin{bmatrix} 1 & 6 \\ -1 & -4 \end{bmatrix}$.
 - (a) Find the eigenvectors for A.
 - (b) Diagonalize A, i.e. find matrices P and D such that $P^{-1}AP = D$.

a)
$$\lambda = -1$$
 solve $(A+I)\chi = 0$:
$$\begin{bmatrix} 2 & 6 \\ -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} \chi = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

$$\lambda = -2$$
 Filter $(A+2I)\chi = 0$:
$$\begin{bmatrix} 3 & 6 \\ -1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \chi = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$D = \begin{bmatrix} -1 & 6 \\ 0 & -1 \end{bmatrix} \quad P = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix}$$

$$Check: \begin{bmatrix} +1 & +2 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 97 & 6 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} -3 & -2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 6 \\ -1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ -1 & -4 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} -3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$

- (3) Let A be the same matrix as in Q1, i.e. $A = \begin{bmatrix} 1 & 6 \\ -1 & -4 \end{bmatrix}$.
 - (a) Write down a product of matrices which gives A^k .
 - (b) Write down a product of matrices which gives e^{At} .
 - (c) What can you say about e^{At} as $t \to \infty$?

a)
$$D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
 $P = \begin{bmatrix} 32 \\ -1-1 \end{bmatrix}$ $A = PDP^{-1}$

$$A^{k} = PD^{k}P^{-1}$$

5)
$$e^{At} = I + At + A^2 t^2 + ...$$

$$= P(I + Dt + D^2 t^2 + ...) P' = P \begin{bmatrix} e^{-t} & 6 \\ 0 & e^{-2t} \end{bmatrix} P'$$

(4) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\2\\2 \end{bmatrix}.$$

Use the Gram-Schmidt process to find an orthonormal basis.

$$q_1 = \frac{1}{13} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad q_2 = V_2 - (V_2, q_1) q_1$$

$$q_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \frac{1}{13} \cdot 3 \frac{1}{13} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$q_1 = \frac{1}{12} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$q_2 = V_2 - (V_2, q_1) q_1$$

$$q_{3} = v_{3} - (q_{1}, v_{3})q_{1} - (q_{2}, v_{3})q_{2} = \begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix} - \frac{1}{r_{3}} 4 \frac{1}{r_{3}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \frac{1}{r_{2}} \cdot \frac{60}{r_{2}}$$

$$= \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} - \frac{4}{3} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 413 \\ 443 \\ 213 \end{bmatrix}$$

(5) (a) Suppose A is an $n \times n$ matrix and $A^2 = A$. What can you say about $\det(A)$?

(b) Suppose A is an $n \times n$ matrix and det(A) = 0. What can you say about the eigenvalues of A?

a)
$$A^{2} = A \Rightarrow \det(A)^{2} = \det(A) \Rightarrow \det(A)^{2} - \det(A)^{2} = 0$$

 $\det(A) (\det(A) - 1)^{2} = 0$
 $\det(A) = 0$

6) at least are eigenvalue is 0

(6) Let B be the basis for \mathbb{R}^2 given by

$$B = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}.$$

- (a) Find a matrix which converts vectors written in the standard basis to vectors written with respect to the basis B.
- (b) Use your answer to (a) to write $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (in the standard basis) as a linear combination of vectors in B.

a)
$$P^{-1} = \begin{bmatrix} 2-3 \\ -1 & 2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 2 - 3 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{\overline{E}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{\overline{B}}$$

(7) (a) Write down a matrix A corresponding to an anticlockwise rotation of $\pi/4$ about the origin in \mathbb{R}^2 .

(b) Write down a matrix B which expands \mathbb{R}^2 by a factor of 2 in the x-direction and also reflects across the x-direction

direction, and also reflects across the x-direction.

(c) Use your answers above to find a matrix which expands \mathbb{R}^2 by a factor of 2 in the line y = x, and a factor of 3 in the line y = x.

reflects across
$$y=\infty$$

a) $\left[\cos(\pi l_4) - \sin(\pi l_4)\right] = \left[\frac{1}{2} - \frac{1}{2}\right]$
 $\left[\sin(\pi l_4) \cos(\pi l_4)\right] = \left[\frac{1}{2} - \frac{1}{2}\right]$

b) $\left[2 6 - 1\right]$

(8) Let
$$A = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$$
.

(a) Find the eigenvalues and eigenvectors for A.

(b) Can you diagonalize A? Explain.

a)
$$\det(A - \lambda I) = \begin{bmatrix} -1 - \lambda & 4 \\ -1 & 3 - \lambda \end{bmatrix} = \begin{bmatrix} (-1 - \lambda)(3 - \lambda) + 4 \\ \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 \\ \lambda = 1/1.$$

eigenvectors, solve (A-I)x=0

$$\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} \sim 7 \begin{bmatrix} -2 & 4 \\ 0 & 6 \end{bmatrix} \qquad \chi = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

only me eigenvector, so can't diagenelize

(9) Let
$$J = \begin{bmatrix} 0 & x & 0 \\ 0 & 0 & y \\ 0 & 0 & 0 \end{bmatrix}$$
, where x and y may be either 0 or 1.

- (a) What are the eigenvalues of A?
- (b) What are the largest and smallest number of eigenvectors that A may have?
- (c) Suppose $A = PJP^{-1}$, for some invertible matrix P. Show that $A^3 = 0$.

a)
$$\lambda = 0.00$$

$$\begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} \in 1 \text{ eigenvalue}$$

b) # eigenvector ≥ 1 , ≤ 3 . $\begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} \in 2 \text{ eigenvalue}$

$$\begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} \in 2 \text{ eigenvalue}$$

$$\begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} = \begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} = \begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} = \begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix}$$

The section of the section

(10) Let A be a matrix with eigenvalues $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 2$ and $\lambda_4 = -2,$ and the following orthonormal eigenvectors

$$v_1 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, v_2 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_3 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, v_4 = \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Write the vector $b = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$ with respect to the basis of eigenvectors. (Hint:

use the fact that the v_i are orthogonal.)

(b) Use your answer above to find Ab with respect to the basis of eigenvectors.

a)
$$b = \frac{3}{2}v_1 + \frac{3}{2}v_2 + -\frac{1}{2}v_3 + \frac{1}{2}v_4 = \begin{cases} \frac{3}{2} \\ \frac{3}{2} \\ -\frac{1}{2} \end{cases}$$
b) $Ab = \frac{3}{2}v_1 + (-1)\frac{3}{2}v_2 + 2\cdot(-\frac{1}{2})v_3 - 2\frac{1}{2}v_4$

b)
$$Ab = \frac{3}{2}v_1 + (-1)\frac{3}{2}v_2 + 2 \cdot (-\frac{1}{2})v_3 - 2\frac{1}{2}v_4$$

$$= \begin{bmatrix} 3/1 \\ -3/2 \\ -1 \\ -1 \end{bmatrix} \beta.$$