Math 338 Linear Algebra Spring 22 Midterm 2a

Name: goWhMS

e 1 will count your best 8 of the following 10 questions.
e You may use a calculator without symbolic algebra capabilities, and a 3 x 5
index card of notes.
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(a) The matrix A determines a map r — Az from R* to R’. What are a

and b7
(b) Find all solutions to the equation Az = 0.

(1) Consider the matrix A with LU factorization: A = |:f1

£> &= 4 L=13.
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(2) Consider the equation Az = b, where A= |1 —1 3 and b= [0|. Find
3 -2 4 c
all possible solutions for all values of c.
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(3) Let S be the following set of vectors.

[0

(a) Find a subset of S which is a basis for the span of 5.
(b) Do the vectors in S span R3?
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(4) (a) Write down a basis for R4
(b) Write down a spanning set for R? which is not a basis.

(c) Write down a linearly independent set in R* which is not a basis.
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(5) (a) Write down a 2 x 2 matrix giving projection onto the z-axis.
(b) Write down a 2 x 2 matrix corresponding to a rotation by /2.
(c) Use your answers to (a) and (b) to write down a product of matrices
which gives projection onto the y-axis.
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(6) Use the Gram-Schmidt algorithm to find an orthonormal basis for R®, starting

0
with the basis { l'()} , [
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(7) Let v= | 1 | be a vector in R?.
—1
(a) Show that the set of all vectors perpendicular to v is a vector subspace
of R3.
(b) Find a basis for this vector subspace.
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(8) Let A= E :g}

(a) Find the eigenvalues for A.
(b) Find the eigenvectors for A.
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(9) Let A= [é :5 . Use your answer to the previous question to write down a
matrix S, and a diagonal matrix D such that A = S™'DS. Verify that this
is correct.
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(10) Let P3 be the vector space of cubic polynomials.
(a) Write down a basis for Ps.
(b) Show that the map T': Py — F3 given by f(x) = xf'(x) is a linear map.
(¢) Write down a matrix for T with respect to the basis in (a).
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