## Math 338 Linear Algebra Spring 22 Midterm 2a

| Name: | Solutions |  |
|-------|-----------|--|
| rame: |           |  |

- $\bullet$  I will count your best 8 of the following 10 questions.
- $\bullet$  You may use a calculator without symbolic algebra capabilities, and a  $3\times 5$  index card of notes.

| 1  | 20 |      |
|----|----|------|
| 2  | 10 |      |
| 3  | 10 |      |
| 4  | 10 |      |
| 5  | 10 |      |
| 6  | 10 | 9- 1 |
| 7  | 10 |      |
| 8  | 10 | a    |
| 9  | 10 |      |
| 10 | 10 |      |
|    | 80 |      |

|           | 8 |
|-----------|---|
| Midterm 2 |   |
| Overall   |   |
| Overan    |   |

(1) Consider the matrix 
$$A$$
 with  $LU$  factorization:  $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 

- (a) The matrix A determines a map  $x \mapsto Ax$  from  $\mathbb{R}^a$  to  $\mathbb{R}^b$ . What are a and b?
- (b) Find all solutions to the equation Ax = 0.

a = 4 
$$b = 3$$
.

b) 
$$x_4 = t$$
  
 $x_3 + x_4 = 0$   $x_3 = -t$   
 $x_2 = s$ 

$$x_1 - x_2 + x_4 = 0$$
  $x_1 = s - t$ 

$$\left\{ \begin{bmatrix} s-t \\ s \\ -t \\ \varepsilon \end{bmatrix} \right\} = \left\{ s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 6 \\ -1 \end{bmatrix} \right\}.$$

(2) Consider the equation Ax = b, where  $A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & -1 & 3 \\ 3 & -2 & 4 \end{bmatrix}$  and  $b = \begin{bmatrix} 1 \\ 0 \\ c \end{bmatrix}$ . Find all possible solutions for all values of c.

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 1 & -1 & 3 & 0 \\ 3 & -2 & 4 & c \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -82 & c-3 \end{bmatrix}$$

unique solution for all values of c

$$x_3 = -1$$

$$x_2 - 2x_3 = c - 3$$
.

$$\chi_1 - c + 5 - 2 = 1$$
  $\chi_1 = -2 + c$ 

$$\begin{bmatrix} x_4 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2+c \\ -5+c \\ -1 \end{bmatrix}.$$

(3) Let S be the following set of vectors.

$$S = \left\{ \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} \right\}.$$

- (a) Find a subset of S which is a basis for the span of S.
- (b) Do the vectors in S span  $\mathbb{R}^3$ ?

$$\begin{bmatrix} 3 & 1 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 3 & -1 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 3 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 \\ -1 & 3 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & 6 & 5 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$a) \qquad \begin{cases} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \end{cases}$$

(4) (a) Write down a basis for  $\mathbb{R}^4$ .

(b) Write down a spanning set for  $\mathbb{R}^4$  which is not a basis.

(c) Write down a linearly independent set in  $\mathbb{R}^4$  which is not a basis.

a) 
$$\{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\$$

$$\mathsf{b}) \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

c) 
$$\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$
.

- (5) (a) Write down a  $2 \times 2$  matrix giving projection onto the x-axis.
  - (b) Write down a  $2 \times 2$  matrix corresponding to a rotation by  $\pi/2$ .
  - (c) Use your answers to (a) and (b) to write down a product of matrices which gives projection onto the y-axis.

a)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 27 \\ 0 \end{bmatrix}$$
b)
$$R = \begin{bmatrix} 050 - 5100 \\ 1100 & 050 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
c)
$$R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

(6) Use the Gram-Schmidt algorithm to find an orthonormal basis for  $\mathbb{R}^3$ , starting

with the basis 
$$\left\{\begin{bmatrix}0\\0\\3\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\3\end{bmatrix}\right\}$$
.

$$q_2 = v_2 - (q_1 \cdot v_2) q_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - (1) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$7^2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{52} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \\ 0 \end{bmatrix}$$

$$q_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

(7) Let 
$$v = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 be a vector in  $\mathbb{R}^3$ .

(a) Show that the set of all vectors perpendicular to v is a vector subspace of  $\mathbb{R}^3$ .

(b) Find a basis for this vector subspace.

a) addition: if 
$$x.v=0$$
 and  $y.v=0$  thun  $(x+y).v=x.y+y.v=0$ /
states multiplication: if  $x.v=0$  then  $(kx).v=k(x.v)=k.0=0$   $\sqrt{2}$ .

b)  $\begin{bmatrix} 1 & -17 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$   $x_1 + s - t = 0$   $x_2 = -s + t$ 
 $x_2 = s$ 

$$\begin{cases} -s + t \\ s \\ t \end{cases} = \begin{cases} s \begin{bmatrix} -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{cases}$$

bans for mult space | tenel is if [i]?

(8) Let 
$$A = \begin{bmatrix} 4 & -3 \\ 6 & -5 \end{bmatrix}$$
.

- (a) Find the eigenvalues for A.
- (b) Find the eigenvectors for A.

a) 
$$\begin{vmatrix} 4-\lambda & -3 \\ 6 & -5-\lambda \end{vmatrix} = -(4-\lambda)(5+\lambda) + 18$$
  

$$= \lambda^{2} + \lambda - 20 + 18 = \lambda^{2} + \lambda - 2$$

$$= (\lambda+2)(\lambda-1)$$

$$\lambda = -2, 1$$

$$\lambda = -2, 1$$

$$\lambda = 1: \begin{bmatrix} 3 & -3 \\ 6 & -6 \end{bmatrix} \sim \begin{bmatrix} 3 - 3 \\ 0 & 0 \end{bmatrix} \qquad \forall = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$R^{2} \xrightarrow{A} R^{2}$$

$$S T \qquad P = R$$

$$R^{2} \longrightarrow R^{2}$$

(9) Let  $A = \begin{bmatrix} 4 & -3 \\ 6 & -5 \end{bmatrix}$ . Use your answer to the previous question to write down a matrix S, and a diagonal matrix D such that  $A = S^{-1}DS$ . Verify that this is correct.

$$D = \begin{bmatrix} -2 & \circ \\ 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1-1 \\ -2 & 1 \end{bmatrix}.$$

$$S^{-1}DS = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & \circ \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1+1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & \circ \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1+1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 4-3 \\ 6-5 \end{bmatrix} \checkmark.$$

- (10) Let  $P_3$  be the vector space of cubic polynomials.
  - (a) Write down a basis for  $P_3$ .
  - (b) Show that the map  $T: P_3 \to P_3$  given by  $f(x) \mapsto xf'(x)$  is a linear map.
  - (c) Write down a matrix for T with respect to the basis in (a).

b) 
$$\frac{1}{4t^{3}+bt^{3}}$$
 sums:  $f(x)+g(x) \mapsto \chi\left(f'(x)+g'(x)\right)$   
=  $\chi f'(x)+\chi g'(x)$   
=  $T(f)+T(g)$ .

constant multiples: 
$$T(kf(x)) = x(kf(x))' = x lef'(x) = k(xf'(x)) = kT(x)$$

c) 
$$T(ax^{2}+bx^{2}+cx+d) = x(a.3x^{2}+b.2x+c) = 3ax^{2}+2bx^{2}+cx$$

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \\ 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 3a \\ 2b \\ 6 \\ 0 \end{bmatrix}$$