Linear Algebra Spring 22 Sample Midterm 2

- (1) Suppose A is an $m \times n$ matrix for which $Ax = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ has no solutions and $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ has exactly one solution.
 - (a) Give all possible information about m and n and the rank r of A.
 - (b) Find all solutions to Ax = 0 and explain your answer.
 - (c) Write down an example of a matrix A that fits the description in part (a).
- (2) This 3×4 matrix depends on c:

$$A = \begin{bmatrix} 1 & 2 & 4 & 4 \\ 2 & c & 4 & 6 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

- (a) For each c find a basis for the column space of A.
- (b) For each c find a basis for the nullspace of A.
- (c) For each c find the complete solution x to $Ax = \begin{bmatrix} 1 \\ c \\ 0 \end{bmatrix}$.
- (3) If A is a 3 by 5 matrix, what information do you have about the nullspace of A?
- (4) Suppose row operations on A lead to this matrix R = rref(A):

$$R = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Write all known information about the columns of A.

- (5) (a) What can you say about the number of vectors in a spanning set for \mathbb{R}^n which is not a basis?
 - (b) What can you say about the number of vectors in a linearly independent set in \mathbb{R}^n which is not a basis?

(6) Let S be the following set of vectors.

$$S = \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$$

- (a) Find a subset of S which is a basis for the span of S.
- (b) Do the vectors in S span \mathbb{R}^3 ?
- (7) Let v be a vector in \mathbb{R}^n . Show that the collection of all vectors perpendicular to v forms a vector space.

(8)
$$A = \begin{bmatrix} 1 & -1 & 0 & 2 & 1 \\ 0 & 3 & -1 & -3 & 0 \\ 2 & 1 & -1 & 1 & 2 \end{bmatrix}$$

- (a) Find the row echelon form for A.
- (b) Find the rank and nullity of A.
- (c) Find a basis for the image of A.
- (d) Find a basis for the kernel of A.
- (9) (a) Write down a 2×2 matrix giving a rotation about angle $\pi/3$ anti-clockwise.
 - (b) Write down a 2×2 matrix giving reflection in the x-axis.
 - (c) Use your previous answers to write down a 2×2 matrix giving reflection in the line through the origin making an angle of $\pi/3$ with the x-axis.
- (10) Consider the vector $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ in \mathbb{R}^2 with respect to the standard basis. Write it down with respect to the basis $\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$
- (11) Use the Gram-Schmidt algorithm to produce an orthonormal basis for \mathbb{R}^3 , starting with the basis $\left\{\begin{bmatrix}0\\2\\0\end{bmatrix},\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}2\\2\\0\end{bmatrix}\right\}$
- (12) Let A be the matrix $A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix}$.
 - (a) Find the eigenvalues of A.
 - (b) Diagonalize A, i.e. find matrices P and D such that $P^{-1}AP = D$.
 - (c) Find an exact formula for A^k .

- (d) What are the eigenvalues for A^k ?
- (13) Let $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ be given by L(x,y) = (x+2y,x-2y). Let

$$F = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

be a basis for \mathbb{R}^2 , and let E be the standard basis for \mathbb{R}^2 .

- (a) Find the matrix for L with respect to E.
- (b) Find the matrix for L with respect to F.
- (c) What is the rank and nullity of L?
- (14) Let M_2 be the vector space of 2×2 matrices, and consider the map $T: A \mapsto A A^T$.
 - (a) Show that T is a linear map.
 - (b) Write down a matrix for T with respect to the standard basis for M_2 .
 - (c) Write down a matrix for T with respect to the basis

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

- (d) Is T one-to-one? Explain.
- (e) Is T onto? Explain.