Linear Algebra Spring 22 Sample Final

(1) Find all solutions to the following system of linear equations.

$$2x_1 - 2x_2 + 2x_3 + 2x_4 = 0$$
$$2x_1 + x_3 + 3x_4 = 0$$
$$x_1 - x_2 + x_3 + 2x_4 = 0$$

- (2) (a) Write down a matrix for a linear transformation of \mathbb{R}^3 which rotates by $\pi/2$ clockwise about the z-axis.
 - (b) Write down a matrix for a linear transformation of \mathbb{R}^3 which doubles lengths in the y-direction.
 - (c) Write down a matrix for a linear transformation of \mathbb{R}^3 which reflects in the yz-plane.
 - (d) Use your answers above to write down a matrix for a linear transformation of \mathbb{R}^3 which doubles lengths in the y-direction, then rotates by $\pi/2$ clockwise about the z-axis, and then reflects in the yz-plane.
- (3) (a) Write down a spanning set for \mathbb{R}^4 which is not linearly independent.
 - (b) Write down a basis for \mathbb{R}^4 which is not orthogonal.
 - (c) Write down a set of three vectors which span a two-dimensional subspace of \mathbb{R}^4 .
- (4) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Use the Gram-Schmidt process to find an orthogonal basis.

- (5) Let $V = \text{Span}\{(1, -2, 1), (3, 1, 2), (2, 3, 1)\}$ in \mathbb{R}^3 .
 - (a) What is the dimension of V?
 - (b) Find a basis for V^{\perp} .

(6)

$$A = \begin{bmatrix} 12 & 15 \\ -10 & -13 \end{bmatrix}$$

- (a) Find the eigenvalues of A.
- (b) Find the eigenvectors for A.
- (c) Diagonalize A, i.e. find matrices P and D such that $P^{-1}AP = D$.
- (d) Write down products of matrices which give you A^k and e^{At} .

(7) Let $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ be given by L(x,y) = (3x - y, x + 2y). Let

$$S = \left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

be a basis for \mathbb{R}^2 , and let T be the standard basis for \mathbb{R}^2 .

- (a) Find the matrix for L with respect to T.
- (b) Find the matrix for the change of basis from S to T.
- (c) Find the matrix for L with respect to S. Don't worry if its not diagonal.
- (8) If A is a non-singular $n \times n$ matrix such that $A^{-1} = A^T$, what can you say about the determinant of A?
- (9) Let A be a 4×5 matrix such that the sum of the rows add up to the zero vector.
 - (a) What can you say about the column rank of A?
 - (b) The matrix A determines a linear map $L: \mathbb{R}^5 \to \mathbb{R}^4$ given by $L(\mathbf{x}) = A\mathbf{x}$, what can you say about the kernel of L?
- (10) Let A have the following LU factorization:

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ -2 & 2 & -3 & -1 \\ 1 & -1 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Find all solutions to Ax = 0.
- (b) Find all solutions to $Ax = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
- (c) Find a basis for the columns space.
- (d) Find a basis for the row space.
- (11) Let V be the vector space of 2×2 matrices under addition and scalar multiplication.
 - (a) Write down a basis for V.
 - (b) Let tr(A) be the sum of the diagonal elements of A. Show that the map $A \mapsto tr(A)$ is a linear map, and find the kernel of this map.
 - (c) Show that the map $A \mapsto A \frac{1}{2} \operatorname{tr}(A)I$ is a linear map. What is the image of this map? What is the kernel of this map?