Math 301 Introduction to Proof Spring 22 Midterm 2

- (1) (a) Prove that for all integers n, if n^2 is even, then n is even.
 - (b) Prove that $\sqrt{2}$ is irrational. (You may use part (a).)
- (2) Give examples of:
 - (a) a function $f: \mathbb{R} \to \mathbb{R}$ which is injective but not surjective.
 - (b) a function $f: \mathbb{N} \to \mathbb{Z}$ which is surjective but not injective.
- (3) What do the following statements mean in ordinary language?
 - (a) $(\forall x \in \mathbb{R})(\exists a \in A)(a > x)$
 - (b) $(\exists x \in \mathbb{R})(\forall a \in A)(a > x)$
 - (c) $(\exists A \subseteq \mathbb{R})(\forall x \in \mathbb{R})(\exists a \in A)(a > x)$
- (4) State the negation of the following statements, using appropriate quantifiers:
 - (a) The function $f: \mathbb{R} \to \mathbb{R}$ is strictly increasing.
 - (b) The natural number n is prime.
- (5) Write out a careful proof or give a counterexample to the following statement: Let $f: X \to Y$ be a function, and let $A, B \subseteq X$. Then $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (6) Write out a careful proof or give a counterexample to the following statement: Let $f: X \to Y$ be a function, and let $A, B \subseteq X$. Then $f(A) \cap f(B) \subseteq f(A \cap B)$.
- (7) Write out a careful proof or give a counterexample to the following statement: If $g \circ f$ is surjective then g is surjective.
- (8) Write out a careful proof or give a counterexample to the following statement: If $g \circ f$ is injective then g is injective.
- (9) Consider the statement:
 - Let $f: X \to Y$ be a function, and let $A \subseteq X$. If $x \notin A$ then $f(x) \notin f(A)$.
 - (a) State the contrapositive of the statement, and then prove or give a counterexample.
 - (b) State the converse of the statement, and then prove or give a counterexample.
- (10) Prove or give a counterexample to the following statement:

Let $f: X \to Y$ be a function. For any $A, B \subseteq Y$, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

OI a) The If 12 is even, then u is even.

Proof (anhaporahive) assume in is odd. Then u=2k+1 for some integer ky so $N^2 (2k+1)^2 = 4k^2+4k+1 = 2(2k^2+2k)+1$, which is odd, so u^2 is odd \square .

b) The supp V2 is inational.

Proof (by contradiction) Suppose $\sqrt{2} = a \mid b \mid in (avest terns.)$ Then a^2 is even, so a is oven by a). If a is even, then a = 2c for some $c \in C$, so $2b^2 = (2c)^2 = 4c^2$. This implies that $b^2 = 2c^2$, so b^2 is even. Again by a), this implies to is oven, but then a and b are both even, so have common forth $A \mid a \mid b$ (avest terns. [].

(02 a) f: IR injective but not supcetive: ex.

(a) $f: \mathbb{N} \to \mathbb{Z}$ surjective but injective $f(u) = \int_{-\infty}^{\infty} -1 n \text{ even}$ (a) a) $A \subseteq \mathbb{R}$ wt bounded above $\left\{ -\frac{(u-v)}{2} \right\}$ noad

6) A is bounded below

c) There is a cubut of IR whim is not bounded above.

Regular: $(\exists xy \in \mathbb{N})$ ($x \neq y \in \mathbb{N}$) $(\exists xy \in \mathbb{N})$ $(\exists xy \in \mathbb{N})$) negation: $(\exists xy \in \mathbb{N})$ $(\exists xy \in \mathbb{N})$ $(\exists xy \in \mathbb{N})$ $(\exists xy \in \mathbb{N})$.

b) n is prime : $(\forall p)(p|n \Rightarrow (p=1) \text{ or } (p=n))$ } und pelN. negation: $(\partial p)p|n$ and $(p\neq 1)$ and $(p\neq n)$

CES The f(ANB) S F(A) NF(B).

Proof Suppose $y \in f(\Lambda \cap B)$, then there is an $x \in A \cap B$ such that f(e) = y.

As $x \in A$, this implies $f(x) \in f(A)$, as $x \in B$, this implies $f(x) \in f(B)$, therefore $f(w) \in f(A) \cap f(B)$, so $y \in f(A) \cap f(B)$, as required. \Box .

(Q6 f(A) $nf(B) = f(A \cap R)$ false: 1 > 3 A= \(\frac{1}{3}\) \frac{f(A)>\(\frac{2}{3}\)}{B=\(\frac{2}{3}\) \frac{f(A)}{5} = \(\frac{4}{3}\) \frac{7}{5} \\
\frac{f(A)}{2} \quad \frac{A}{3} \quad \frac{4}{5} \\
\frac{1}{3} \quad \frac{A}{5} \\
\frac{A}{3} \quad \frac{A}{5} \\
\frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \\
\frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \\
\frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \\
\frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \frac{A}{5} \quad \quad \frac{A}{5} \quad \qua

Prof Asome gof is surjective, then for all & Z, there is an x EX s.t. g(ffx))=2 but f(x) ex, so for all zez, there is an element f(x) exst. g(f(x))== so g is sujective. D. g.f: 2 4 injective, but g(2)=9(3)=4. Ces Falx 12 74 ASX a) f: X-> Y function 4= 413 +(813)= {3} contrapositive: $f(x) \in f(A)$ then $x \in A$. False: 1933 f(2) = 3 = 33} but 2 \$ A. Both converse: b) f(x) &f(A) >> x & A contrapostive of course: The XEA >> f(x) Ef(A) Proof fillows from definition of image: f(A) = { f(x) | 26 A} so if 26A, f(2) ef(A) []. @10 f X-Y, ABSY The for (AUB) = for (A) Ufor (B).

Prof 5: suppore x & f'(AUB), then fa) & AUB, so f(a) & Aar ffx) & B. This means $z \in f^{-1}(A)$ or $x \in f^{-1}(B)$, so $z \in f^{-1}(A) \cup f^{-1}(B) \square$.

2' suppose x ef-1(A) uf-1(B). Then x ef-1(A) as x ef-1(B). This means HEN) ∈ A, or f(x) ∈ B, si f(x) ∈ AUB. This mean Z ∈ F-(AUB), as required [].