Math 301 Introduction to Proof Fall 22 Midterm 1

Name:

- Start each question on a fresh sheet of paper. Staple together in numerical order at the end of the exam.
- (1) For each of the following statements, find two distinct elements in the truth set, and two distinct elements not in the truth set. (Indicate clearly which are which.)
 (a) x + y = 1, where the universe is ℝ × ℝ.
 - (b) $A \subseteq B$, where the universe is all subsets of \mathbb{Z} .
- (2) Consider the statement:

If x and y are real numbers with x > y then $(x + y)^2 > x^2 + y^2$.

Which, if any, of the following substitutions give a counter example.

(a) x = 1, y = 2 (b) x = -2, y = 1 (c) x = 1, y = -2 (d) x = 2, y = 1

- (3) Write out a careful proof of the fact that the product of any two odd number is odd.
- (4) Prove or disprove the following statement: If $A \cup B = A \cup C$ then B = C.
- (5) Prove or disprove the following statement: $A (B \cap C) = (A B) \cap (A C)$.
- (6) Prove or disprove the following statement: $A' \cap B = B A$.
- (7) Prove or disprove the following statement: If $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ then $A \subseteq B$.
- (8) State which of the following statements, are true, vacuously true, or false.
 - (a) For integers a, b and c, if $a \mid bc$ then $a \mid b$ or $a \mid c$.
 - (b) If x is an integer with 2x = 1 then x is positive.
 - (c) If $A \subseteq C$ and $B \subseteq D$ then $A \cup B \subseteq C \cup D$.
 - (d) If $\mathcal{P}(A) \cap \mathcal{P}(B) = \emptyset$ then $A \cap B = \emptyset$.
- (9) Write out a careful proof of the fact that if $a \mid b$ then $a^2 \mid b^2$.
- (10) Consider the following theorem and proof. Is the theorem correct? Is the proof correct? Explain.

Theorem. For any sets A and B, $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

Proof. Suppose $x \in \mathcal{P}(A \cup B)$. Then $x \subseteq A$ or $x \subseteq B$, so $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$. Therefore $x \in \mathcal{P}(A) \cup P(B)$.

${\rm Midterm}~1$	Overall	

MTI solutions (21 a) (0,1), (1,0) in muth set, (0,0), (1,1) not in muth set. b) (\$, 123) (\$, Z) in mith ut, (12, \$) (2, \$) ut in mith set. The second se Q2 c) Q3 The product of any the odd number is odd. Proof Let x and y he old numbers, then x=2att and y=26+1 for two integers a and b. Then 2(y > (2a+1)(2b+1)= fabtlatlbtl= 2(2abtarb)+1, which is old, so my is ddD. Q4 False: $A = \{1\}, B = \phi, c = \{1\}$ canterersample. Q6 The A'AB = B-A Prof Suppose x E A A B, then x is in B, but not in A, so x EB-A. = suppor x & B-A, then x is in B, but not in A, so x is in Band A', su x & A'AB. D. Q7 The If $P(A) \leq P(B)$ then $A \leq B$. Prof Assume $P(A) \leq P(B)$. Let $x \in A$, then $s_i x_j \leq A$, so {x} ∈ P(A). As P(A) ≤ P(B), this mean fx} € P(B), so {xy ≤ B, so x ∈ B. Therefore A ⊆ B. D. Q8 a) False 5) vacuously free c) True d) vacuously the.

Q9 This if all then a2/30

Proof If a b then b= ac for some integer c. 2) The $b^2 = b.b = acac = a^2c^2$, so $b^2 = a^2c^2$ for some integr c2, su a2/62. D. D. Taran (S. D. C. S. D. S. D. C. S. D. S. D. S. D. S. D. S. Celo Thum: False cambeexample: A= {1}, B= {23. AUB= {1,23. but AUB $\neq P(A) \cup P(B)$. Prof z E P(AUB) => z EA ar z E B; see cambrexample.