Math 301 Introduction to Proof Fall 22 Sample Midterm 1

- (1) Find three distinct elements for the truth sets of the following statements:
 - (a) $x^2 y^2 = 1$, where the universe is $\mathbb{R} \times \mathbb{R}$.
 - (b) A is a subset of \mathbb{Z} which is closed under subtraction.
 - (c) A is an element of $\mathcal{P}(\mathbb{Z})$.
 - (d) A is a subset of $\mathcal{P}(\mathbb{Z})$.
 - (e) The numbers a, b and c are not the lengths of the sides of any triangle, where the universe is $\mathbb{R}_{>0} \times \mathbb{R}_{>0} \times \mathbb{R}_{>0}$.
- (2) Consider the statement: If n is a cube of an integer, then n is a square number.

Which, if any, of the following substitutions give a counter example.

- a) n = 64 b) n = 8 c) n = 16
- (3) Write out a careful proof of the fact that the square of an odd number is odd.
- (4) What is $\mathcal{P}(\{\emptyset\})$? What is $\mathcal{P}(\mathcal{P}(\{\emptyset\}))$?
- (5) If $A \cap B \subseteq A \cap C$ does this imply that $B \subseteq C$?
- (6) State which of the following statements, are true, vacuously true, or false.
 - (a) If $A \subseteq A \cap B$, then $A \subseteq B$.
 - (b) If $\mathcal{P}(A) = \emptyset$, then $A = \emptyset$.
 - (c) If $A \in B$ and $B \in C$, then $A \in C$.
- (7) Suppose A and B are finite sets with |A|=a, |B|=b and $|A\cap B|=c$. Find
 - (a) $|A \setminus B|$
 - (b) $|A \times (A \cup B)|$
 - (c) $|\mathcal{P}(B \setminus A)|$
- (8) There is an island where all people either always lie, or always tell the truth. You meet three people, A, B and C.

A says: At least one of us is a truth teller.

B says: A is lying.

C says: B is lying.

What can you deduce?

(9) There is an island where all people either always lie, or always tell the truth. You meet D who says "I am lying." What can you deduce?