Math 301 Introduction to Proof Fall 22 Sample Final

(1) Consider the statement

If x and y are real numbers with x < y then $\frac{1}{x^2} > \frac{1}{y^2}$.

Which, if any, of the following substitutions gives a counterexample:

(a)
$$x = 1, y = 2$$

(b)
$$x = 2, y = 1$$

(c)
$$x = -2, y = 1$$

- (2) State which of the following statements are true, vacuously true, or false.
 - (a) $A' \cap B' = (A \cap B)'$
 - (b) If $\mathcal{P}(A) = \emptyset$, then $A = \emptyset$
 - (c) $(A \cup B) C = (A C) \cup (B C)$
- (3) Let $f: X \to Y$ be a function, and let A and B be subsets of X. Prove or disprove: $f(A \cap B) = f(A) \cap f(B)$.
- (4) Let $f: X \to Y$ be a function, and let A be a subset of X. Show that $A \subseteq f^{-1}(f(A))$. Is $f^{-1}(f(A)) = A$?
- (5) Either give examples of functions with the properties below, or explain why they don't exist.
 - (a) An injective function from [0,1] to \mathbb{Z}
 - (b) An sujective function from (0,1) to $(0,\infty)$
 - (c) An injective function from $[0,1] \times [0,1]$ to [0,1]
- (6) State the negation of the following statements, using appropriate quantifiers.
 - (a) The function $f: A \to B$ is injective.
 - (b) There are no surjective functions $f \colon A \to B$.
 - (c) The set $A \subseteq \mathbb{R}$ is bounded below.
- (7) Write out careful proofs, or give counterexamples, to the following statements.
 - (a) If n is an integer then $n^3 + n^2$ is even.
 - (b) If g and $g \circ f$ are injective, then g is injective.
 - (c) If $f: \mathbb{R} \to \mathbb{R}$ is increasing, and $g: \mathbb{R} \to \mathbb{R}$ is increasing, then the function defined by $x \mapsto f(x)g(x)$ is increasing.
- (8) Write out the negation of the statement, " $(\forall x)(p(x)) \Rightarrow (\exists x)(\sim q(x))$ ".
- (9) Let $f: A \to B$ be a function. Write out the converse to the statement "If f is not injective then it is surjective". Prove or disprove the converse.

- (10) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Write out the contrapositive to the statement "If the function f is not strictly increasing then it is decreasing.". Prove or disprove the contrapositive.
- (11) Show that the following numbers are irrational: $\sqrt{3}$, $\sqrt{5}$, $\sqrt{15}$, $\sqrt{3} \sqrt{5}$.
- (12) Show that $1 \times 2 + 2 \times 2^2 + 3 \times 2^3 + \dots + n \times 2^n = (n-1)2^{n+1} + 2$.
- (13) Show that $n^3 \leq 3^n$ for $n \geq 3$.
- (14) Use induction to show that $12^n 7^n$ is divisible by 5.
- (15) Show that $x^{2n} y^{2n}$ is divisible by x + y for all integers x, y and all natural numbers n.
- (16) Show that $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} < 1$.
- (17) Show that $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$.
- (18) Consider the relation on \mathbb{R} determined by $x \sim y$ if xy is an integer. Is this an equivalence relation?
- (19) Consider the relation on functions $f: \mathbb{R} \to \mathbb{R}$ given by $f \sim g$ if there are numbers $A, B \in \mathbb{R}$ such that for all $x, f(x) \leq Ag(x) + B$. Is this an equivalence relation?
- (20) Define a relation on sets by $A \sim B$ if there is a surjection $f: A \to B$. Is this an equivalence relation on sets?
- (21) Let F be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Define a relation on F by $f \sim g$ if g = f'. Is this an equivalence relation? Does it define a function?