Math 623 Geometry Fall 22 Sample Final

- (1) Prove that if the edges of a quadrilateral are all the same length, then it is a parallelogram.
- (2) Show that given two points A and B, the set of equidistant points from both A and B is the perpendicular bisector to the line segment \overline{AB} .
- (3) Given two lines L and M, show that the points on the lie forming the angle bisectors are equidistant from both L and M.
- (4) Show that every polygon may be divided into triangles by adding edges connecting vertices. Use this to compute the sum of the interior angles of an *n*-gon.
- (5) Prove the following:
 - (a) Let m and n be two parallel lines and let AB be a directed line segment that first intersects m and then n and whose length is twice the distance between m and n. Then prove that $\rho_n \circ \rho_m = \tau_{AB}$.
 - (b) Let m and n be two straight lines that intersect at a point A and let α be the counterclockwise angle from m to n at A. Then prove that $\rho_n \circ \rho_m = R_{A,2\alpha}$.
- (6) Construct a spherical triangle with three right angles. What is its area? Is there a spherical quadrilateral with four right angles?
- (7) Euler's formula for a torus (i.e. hollowed out donut) is v e + f = 0. If a torus has exactly 20 triangular faces, how many vertices and edges does it have ?
- (8) Does there exist a polyhedron in \mathbb{R}^3 consisting of 12 hexagonal faces such that every vertex has degree 4? Please justify your answer.
- (9) Define the antipodal map and show that it is a spherical isometry.
- (10) (a) In the Projective plane define the following:(i) ideal point (ii) projective line (iii) ideal line
 - (b) Prove that every two distinct projective lines intersect.

- (11) For the three statements below, fill in the chart with $\mathbf{A}(\text{Always})$ or \mathbf{S} (Sometimes) or $\mathbf{N}(\text{Never})$ in each space.
 - X_1 : Any two distinct lines intersect in a unique point.

 X_2 : For a line L, and point Q outside L, there is a unique line is parallel to L through Q.

 X_3 : The sum of angles of a triangle are greater than π .

	X_1	X_2	X ₃
\mathbb{R}^2			
S^2			
\mathbb{H}^2			

- (12) Find angle between the great circles $L_{\langle 1/3,2/3,2/3\rangle}$ and $L_{\langle -3/5,4/5,0\rangle}$.
- (13) Prove that any two distinct non-antipodal points on S^2 lie on a unique great circle.
- (14) Find the great circle containing the points $P = (0, 1/2, \sqrt{3}/2)$ and Q = (-3/5, 0, 4/5).
- (15) Let f be any isometry of \mathbb{R}^2 . Show that f preserves angles.
- (16) Show that the composition of a rotation by π about (0,0) followed by a rotation by π about (2,0) is a translation. Draw pictures.
- (17) Let f be an isometry of \mathbb{R}^2 given by three reflections, $f = \rho_c \circ \rho_b \circ \rho_a$. Suppose the three lines a, b and c intersect at a single point. Describe the isometry f.
- (18) Let f be any isometry of \mathbb{R}^2 . Show that f takes circles to circles.
- (19) If a point lies on a great circle, then its antipode also lies on it i.e if $P \in L_{\mathbf{n}}$ then $-P \in L_{\mathbf{n}}$.

 $\mathbf{2}$

- (20) Any two distinct great circles intersect in a pair of antipodal points i.e. if $\mathbf{n}_1 \neq \mathbf{n}_2$ then $L_{\mathbf{n}_1} \cap L_{\mathbf{n}_2} = \{P, -P\}.$
- (21) Let P and Q be distinct points on S^2 . Then the set of points which are equidistant from P and Q is a great circle.
- (22) Let f be an isometry of R² given by three reflections, f = ρ_c ο ρ_b ο ρ_a.
 (a) Suppose the three lines intersect at a single point. Describe the isometry f.
 - (b) Suppose that a is parallel to b, and c is perpendicular to a. Describe the isometry f.
- (23) Let f be reflection in the line x = 1, and let g be an anti-clockwise rotation of $\pi/4$ about (0,0). Describe $f \circ g$.
- (24) Give example of two different type of isometries which preserve the x-axis.
- (25) Describe all isometries which preserve the x-axis.
- (26) Find a translation of \mathbb{R}^2 which takes the line x = y to the lines x = y + 2.
- (27) Show that the composition of a rotation by π about (0,0) followed by a rotation by π about (2,0) is a translation. Draw pictures.
- (28) Find the perpendicular bisector for the segments \overline{PQ} where P = (1/2, -1/2, 1/2), Q = (2/3, 1/3, -2/3).
- (29) Draw a frieze pattern with symmetry group consisting just of translations.
- (30) Draw a frieze pattern with symmetry group consisting of translations and horizontal reflections and glide reflections only.
- (31) What are the symmetry group of the following frieze patterns:

 $\cdots EEEEEEE \cdots \cdots TTTTTTT \cdots \cdots SSSSSS \cdots$