Classwork 14

Intermediate Algebra MTH 35 Instructor: Abhijit Champanerkar April 13th 2015

Topic: Modeling with Exponential and Logarithmic functions

Name:	
	ertain bacteria population doubles every 4 hours. Initially there are 2000 bacteria a colony.
(a) Find a model for the bacteria population after t hours.

(c) When will the bacteria count reach a million?

(b) How many bacteria are in colony after 15 hours?

- 2. In a particularly bad zombie outbreak in Freaktown, the population of zombies was 100,000 in 2050, and 300,000 in 2055. Assuming that the zombie population grows exponentially,
 - (a) Find a function that models the zombie population t years after 2050.
 - (b) Find the time require for the population to double.
 - (c) Predict the zombie population in 2075.

3.	3. The half-life of strontium-90 is 28 years. How long will it take a 50-mg sampled decay to a mass of 32 mg.	le to				
4.	4. After 3 days, a sample of radon-222 has decayed to 58% of its original amount.					
	(a) What is the half-life of radon-222?(b) How long will it take the sample to decay to 20 % of its original amount?					
	(b) Frow fortg with trace the sample to decay to 20 % of its original amount.					

Classwork 15

Intermediate Algebra MTH 35

Topic: Unit Circle Trigonometry

n T		
Name:		

1. Convert from degree to radians.

(a)
$$270^{\circ} =$$

(b)
$$120^{\circ} =$$

(c)
$$-120^{\circ} =$$

(d)
$$-135^{\circ} =$$

(e)
$$480^{\circ} =$$

(f)
$$540^{\circ} =$$

2. Convert from radians to degrees.

(a)
$$\pi/4 =$$

(b)
$$3\pi/2 =$$

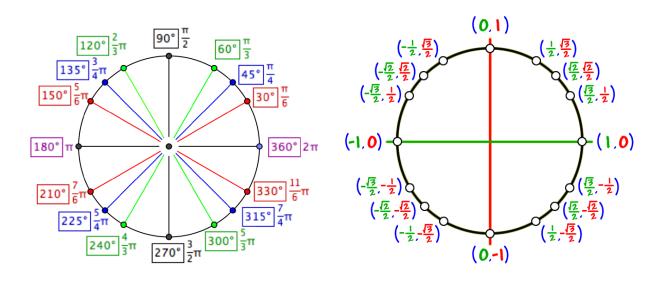
(c)
$$-5\pi/6 =$$

(d)
$$-4\pi/3 =$$

(e)
$$8\pi/3 =$$

(f)
$$-3\pi/2 =$$

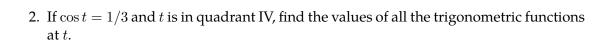
3. Using the figures below, find the terminal point on the unit circle determined by the real numbers:


(a)
$$t = -\pi/4$$

(b)
$$t = 5\pi/6$$

(c)
$$t = -5\pi/3$$

(d)
$$t = 8\pi/3$$


(e)
$$t = 5\pi/4$$

Classwork 16 Intermediate Algebra MTH 35 Topic: Unit Circle Trigonometry

Name:

1. Find the co-ordinates of the point $P(x,y)$ if			
(a) if P is in the second quadrant and the y-coordinate is $1/3$.			
(b) if P is in the third quadrant and the x-coordinate is $-3/4$.			

3. If $\sin t = 2/5$ and t is in quadrant I, find the values of all the trigonometric functions at t.

4. If $\sin t = -4/7$ and t is in quadrant III, find the values of all the trigonometric functions at t.