Math 232 Calculus 2 Fall 21 Sample final

- 1. Using Implicit differentiation derive the formula $\frac{d}{dx}(\arccos x) = \frac{-1}{\sqrt{1-x^2}}$
- 2. Find the equation of tangent to the curve $y = \arcsin(1 1/x^3)$ at the point (1,0).
- 3. Sketch the region enclosed by the curves $y=x^2$ and y=x+6 and find its area.
- 4. Sketch the region enclosed by the curves $y = \sin 2x$ and $y = \cos x$ between $x = -\pi/2$ and $x = \pi/2$ and find its area.
- 5. Find the volume of the solid obtained by revolving the region bounded by the curves $y = x^2$ and $x = y^2$ about the line y = -1 using the discs method as well as the shell method.
- 6. Set up (but do not evaluate) integrals to find the volume of the solid obtained by revolving the region bounded between the curves $y = x^2 1$ and the line y = -x + 5 about the following axes:
 - (a) y = 10 (use discs/washers)
 - (b) y = -3 (use shells)
- 7. Find the volume of the given solid obtained by rotating the region bounded by given curves about the specified axis.
 - (a) $y = x^2, y = 0, x = 3$ about x-axis.
 - (b) $y = x^3, y = 12x x^2$ in the first quadrant rotated about x-axis.

1

- 8. Find the arc length of the following curves.
 - (a) $y = \ln(\cos x)$ from x = 0 to $x = \pi/4$.
 - (b) $x = \frac{1}{2}(e^y + e^{-y})$ from y = 0 to y = 2.
- 9. Find the length of the curve $y = x^{3/2}$ for $0 \le x \le 3$.
- 10. Evaluate the following integrals.

(a)
$$\int e^{4x+3} dx$$
 (l) $\int \cos^2(x) dx$ (w) $\int \frac{3}{t^2 + 4t + 5} dt$
(b) $\int \frac{1}{ax+b} dx$ (m) $\int_0^{\pi} \sin^2(x) dx$ (x) $\int \frac{3x+4}{x^2+9} dx$

(c)
$$\int_{0}^{1} \frac{3t}{(t^{2}+4)^{5}} dx$$
 (n) $\int_{0}^{1} \tan y \, dy$ (y) $\int_{0}^{1} \frac{2x-3}{x^{2}+10x+30} \, dx$ (d) $\int_{0}^{1} \sin(xy+z) dy$ (2) $\int_{0}^{1} \frac{3t}{(t^{2}+4)^{5}} dx$ (2) $\int_{0}^{1} \frac{2x-3}{x^{2}+10x+30} dx$

(d)
$$\int \sin(xy+z)dy$$
 (o)
$$\int \cos^2 x \sin^3 x \, dx$$
 (z)
$$\int y+2\sqrt{2+3y}dy$$

(e)
$$\int_{1}^{e^{2}} \frac{4 + \ln x}{x} dx$$
 (p) $\int \sec t \ dt$ (aa) $\int \frac{x^{2}}{(x^{2} - 2x + 1)^{2}} dx$

(f)
$$\int xe^{5x}dx$$

(g) $\int s^2e^{3s}ds$
(q) $\int x^2-6x-16^{3x}dt$
(h) $\int \frac{e^t}{e^{2t}+3e^t+2}dx$

(f)
$$\int xe^{5x} dx$$

(g) $\int s^2 e^{3s} ds$
(h) $\int_1^2 \ln x \, dx$
(i) $\int t^3 \ln t \, dt$
(q) $\int x^2 - 6x - 16^{aa}$
(r) $\int \frac{7t+1}{t^2+t-6} dt$
(ab) $\int \frac{e^t}{e^{2t}+3e^t+2} dx$
(ac) $\int \frac{1}{\sqrt{y}(y-1)} dy$
(b) $\int_1^2 \ln x \, dx$
(c) $\int \frac{9t+1}{3t+4} dt$
(d) $\int_1^\infty \frac{1}{(2x+1)^3} dx$

(i)
$$\int t^3 \ln t \ dt$$
 (t) $\int \frac{9t+1}{3t+4} \ dt$ (ad) $\int_1^\infty \frac{1}{(2x+1)^3} \ dx$

(j)
$$\int \sin x e^x dx$$
 (u) $\int \frac{x^3 + 4x - 3}{x^2 + 4} dx$ (ae) $\int_2^6 \frac{y}{\sqrt{y - 2}} dy$

(k)
$$\int \sin^{-1} x \, dx$$
 (v) $\int \frac{3y^2 + 2}{y^2 + 4} \, dy$ (af) $\int_{-\infty}^{0} e^{3t} \, dt$

11. Determine whether the following series converge or diverge. Indicate which test you are using.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n}{5^{n-1}}$$
 (f) $\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1}$ (k) $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n + 5}$

(b)
$$\sum_{n=1}^{\infty} 2^{1-n}$$
 (g) $\sum_{n=1}^{\infty} \frac{n^2 - n}{n^4 + 2}$ (l) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n + 2}$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} - \frac{3}{n^3}$$
 (h) $\sum_{n=1}^{\infty} \frac{n}{n^3 - 1}$ (m) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2^n + 1}}$

(d)
$$\sum_{n=1}^{\infty} \frac{1+2^n+3^n}{5^n}$$
 (i) $\sum_{n=1}^{\infty} \frac{n^2+1}{3n^2+2}$ (n) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/2}}$

(e)
$$\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^2}$$
 (j) $\sum_{n=1}^{\infty} \frac{2n+3}{3n-5}$ (o) $\sum_{n=1}^{\infty} \frac{3^n}{n!}$

$$(p) \sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

(q)
$$\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 9^n}$$

12. Express the following repeating decimal as a fraction.

(a) 2.00111111111 ...

(b) 1.1212121212 . . .

13. Suppose that the series $\sum_{n=1}^{\infty} c_n(x+1)^n$ converges when x=2 and diverges when x = 4. What can you say about the convergence or divergence of the following series?

(a) $\sum_{n=0}^{\infty} c_n$

(c)
$$\sum_{n=1}^{\infty} c_n (-1)^n 7^n$$

(b)
$$\sum_{n=1}^{\infty} c_n (-1)^n$$
 (d) $\sum_{n=1}^{\infty} c_n (-1)^n 5^n$

14. Find power series representations of the following functions (You may choose the center).

(a) $f(x) = \tan^{-1}(2x)$

(d)
$$f(x) = e^{(x-2)^2}$$

(b) $f(x) = \frac{x^4}{(1+x)^2}$

(e)
$$f(x) = \frac{\sin(2x^2)}{x^2}$$

(c) $f(x) = \ln(1+x)$

(f)
$$f(x) = \int e^{-x^2} dx$$

15. Find Taylor series of the given function at given point.

(a) $f(x) = e^{2x}$, a = 2

(c)
$$f(x) = \sqrt{1+x}, a = 0$$

(b) f(x) = 1/x, a = -3

16. By recognizing each of the following series as a Taylor series evaluated at a particular value of x, or otherwise, find the sum of each of the following convergent series.

(a) $1 + \frac{2}{1!} + \frac{4}{2!} + \frac{8}{2!} + \cdots + \frac{2^n}{n!} + \cdots$

(b) $1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots + \frac{(-1)^n}{(2n+1)!} + \cdots$

- (c) $1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots + \frac{1}{4^n} + \dots$
- (d) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$

1

- 17. Find the Taylor or Maclaurin polynomial for the given function, for the given degree, centered at the given point.
 - (a) $f(x) = x^2, n = 3, c = 1$
- (d) $f(x) = \sin(3x), n = 5, c = 0$
- (b) $f(x) = \frac{1}{x^2}, n = 4, c = 1$
- (c) $f(x) = \ln x, n = 4, = 2$
- (e) $f(x) = \sqrt{x}, n = 4, c = 1$
- 18. How good are the following approximations? (use error bound for Taylor polynomial)
 - (a) $\cos(0.3) \sim 1 \frac{(0.3)^2}{2!} + \frac{(0.3)^4}{4!}$
 - (b) $e \sim 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!}$
- 19. Find the equation of tangent at the given point on the given parametric curve.
 - (a) $x = \cos t, y = 3\sin t \text{ at } t = 0.$
 - (b) $x = \sqrt{t}, y = \sqrt{t-1} \text{ at } t = 2.$
- 20. Find all the points of horizontal and vertical tangency to the parametric curve $x = t^2 t + 2$ and $y = t^3 3t$.
- 21. Find a parameterization for the parabola $y = 2x^2$ from (0,0) to (1,2), and use this to find:
 - (a) The length of the curve.
 - (b) The surface area of the shape obtained by rotating this curve around the x-axis.
- 22. Draw the curve in polar coordinates given by $r = 1 + \sin \theta$.
 - (a) Find the area enclosed by the curve.

- (b) Write down the formula for the length of the curve
- (c) Find the arc length of the curve. (Hint: set $\theta=2t$ and the observe that the expression in the square root is a perfect square.)