Math 231 Calculus 1 Fall 21 Midterm 1b

Name: Solutions

 \bullet I will count your best 8 of the following 10 questions.

• You may use a calculator, and a 3 × 5 index card of notes.

	1	10	1
	2	10	(2147-)
	3	10	
	4	10	
	5	10	
	6	10	
	7	10	
	8	10	
	- 9	10	
(4-12)	10	10	
		80	

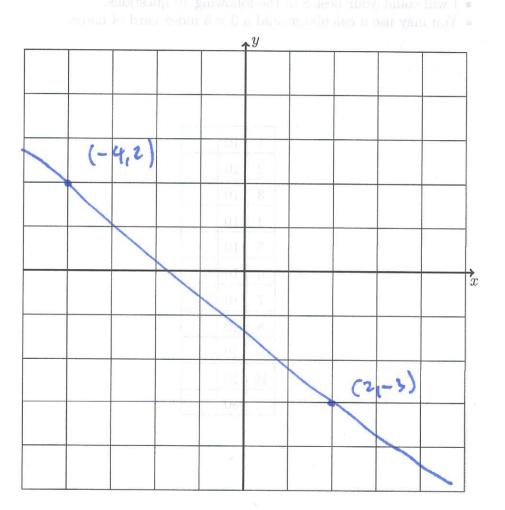
		Τ		7	
200	Midterm 1		* 4		
	Overall	**	-6		3

1

(1) (10 points) Plot the points (2, -3) and (-4, 2) on the grid below, and draw the straight line through the two points. Find the equation of the straight line.

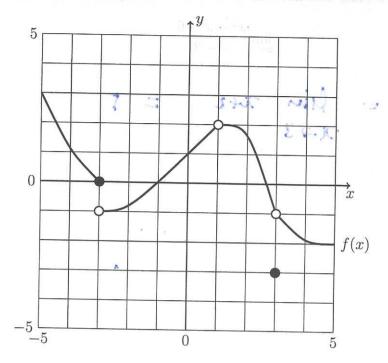
2 Northwicz

 40μ m = 2-(-1) -4-2 $= -\frac{5}{6}$



(3+x)(z-x) with z-x

(2) (10 points) The graph of y = f(x) is shown below. Evaluate each limit, or write DNE if the limit does not exist. No justifications are necessary.



- (a) $\lim_{x\to -3-} f(x)$ \bigcirc
- (b) $\lim_{x\to -3} f(x)$ DNE
- (c) $\lim_{x\to 1+} f(x)$ 2
- (d) $\lim_{x\to 1} f(x)$ 1
- (e) $\lim_{x\to 3-} f(x) [$
- (f) $\lim_{x\to 3} f(x)$ 1

(3) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$=\lim_{x\to 3} \frac{(x^2-x-6)}{(x-3)(x+1)}$$

$$=\lim_{x\to 3} \frac{x^2-x-6}{x-3}$$

$$=\lim_{x\to 3} \frac{x^2-x-6}{x-3}$$

To the control of the limited of the

(f) the attention - !

(4) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

 $=\lim_{x\to 4}\frac{2-\sqrt{x}}{4-x}$ $=\lim_{x\to 4}\frac{2-\sqrt{x}}{4-x}$ $=\lim_{x\to 4}\frac{1}{(2-\sqrt{x})}(x)$ $=\lim_{x\to 4}\frac{2-\sqrt{x}}{4-x}$ $=\lim_{x\to 4}\frac{1}{(2-\sqrt{x})}(x)$ $=\lim_{x\to 4}\frac{2-\sqrt{x}}{4-x}$ $=\lim_{x\to 4}\frac{1}{(2+\sqrt{x})}(x)$ $=\lim_{x\to 4}\frac{1}{(2+\sqrt{x})}(x)$ $=\lim_{x\to 4}\frac{1}{(2+\sqrt{x})}(x)$ $=\lim_{x\to 4}\frac{1}{(2+\sqrt{x})}(x)$

(5) (10 points) Use the limit definition of the derivative to differentiate $f(x) = x^2 - 1$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(2u+h)^2 - 1 - (2x^2-1)}{h}$$

= $\lim_{h \to 0} \frac{2^{2u} 2xh}{h} + \lim_{h \to 0} \frac{(2u+h)^2 - 1 - (2x^2-1)}{h}$

= $\lim_{h \to 0} \frac{2^{2u} 2xh}{h} + \frac{1}{2^{2u}} = \lim_{h \to 0} \frac{(2u+h)^2 - 1 - (2x^2-1)}{h}$

(6) (10 points) Use the limit definition of the derivative to differentiate $f(x) = \frac{1}{x-2}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{5c_1h-2} = \frac{1}{5c_2}$$

(7) (10 points) Find the following limit.

		,	$\lim_{x \to \infty} \frac{\sqrt{4x^2}}{4x}$	$\frac{+1}{-1}$		
E	lim	14+111e2	will be the second	f(x+h)-f(x) =	wil	= (x)2
	ストの	4-11/x (5-14-10) 1	nij). Y	(5-M-x) = 5-X (5-x) (5-M+x)	r) \(\frac{1}{\sqrt{1}} \)	will =
			(net)	(s-x)(s-	white)	NIL 3

(8) Find the first and second derivatives of $f(x) = x^2 + \cos(x) - 1/\sqrt{x}$.

$$f'(x) = 2x - \sin(x) + \frac{1}{2}x^{-3/2}$$

 $f''(x) = 2 - \cos(x) - \frac{3}{4}x^{-1/2}$

$$\left(\frac{f}{g}\right)' = \frac{gf' - g'f}{g^2}$$

(9) Find the first and second derivatives of
$$f(x) = \frac{x}{e^x} + \sqrt[3]{x}$$
.

$$f'(n) = \frac{e^{x}(x)' - (e^{x})'x}{(e^{x})^{2}} + \frac{1}{3}x^{-2/3}$$

$$f'(x) = \frac{e^{x} - xe^{x}}{e^{2x}} + \frac{1}{3}x^{-2/3}$$
 $(f_3)' = f_9' + f_9'$

$$f''(x) = e^{2x} (e^{x} - xe^{x}) - (e^{2x})'(e^{x} - xe^{x}) - \frac{2}{9}x^{-\frac{1}{2}}$$

$$f''(n) = e^{2x} \left(e^{x} - e^{x} + - \lambda e^{x} \right) - \left(e^{x} (e^{x}) + e^{x} (e^{x})' \right) \left(e^{x} - \lambda e^{x} \right) = e^{2x}$$

$$f''(n) = -\frac{2e^{3x} - 2e^{2x}(e^{2x} - 2e^{2x})}{e^{4x}} - \frac{2}{9}x^{-5/3}$$

$$f''(x) = \frac{-\chi - 2 + 2\chi}{e^{\chi}} - \frac{2}{9} x^{-5/3}.$$

$$= \frac{-1 + \chi}{e^{\chi}} - \frac{2}{9} x^{-5/3}.$$

(10) (10 points) The graph of f(x) is given in the top picture. Sketch the graph of f'(x) in the bottom picture.

