Math 232 Calculus 2 Spring 20 Sample midterm 2

(1) Find $\int \cos ^{3} 3 x d x$.
(2) Find $\int \cos 6 x \sin 5 x d x$.
(3) Find $\int \frac{x}{\sqrt{16 x^{2}+1}} d x$.
(4) Find $\int \frac{x^{2}-5 x-2}{(x-1)^{2}(x+3)} d x$.
(5) Find $\int_{0}^{1} x^{2} \ln x^{4} d x$.
(6) Find $\int_{0}^{\infty} \frac{1}{x^{2}+9} d x$.
(7) Can you find the degree three Taylor polynomial centered at $x=0$ for the function $f(x)=\sqrt{x^{3}}$, why or why not? Find the degree three Taylor polynomial for this function centered at $x=1$. Find an error bound for the approximation for $\sqrt{8}$.
(8) Does the sequence $a_{n}=\frac{2^{n}}{n!}$ converge or diverge?
(9) Does the series $\sum_{n=2}^{\infty} e^{-n}$ converge or diverge? If it converges, find the exact value.
(10) Does the series $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}+8 n+3}$ converge or diverge? If it converges, find the exact value.
(11) Does the series $\sum_{n=1}^{\infty} \cos \left(\frac{1}{n}\right)$ converge or diverge?
(12) Does the series $\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n^{4}}$ converge or diverge?
(13) Does the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converge or diverge?
(14) Does the series $\sum_{n=1}^{\infty} \frac{n \sin n}{n^{3}+1}$ converge or diverge?
(15) Does the series $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$ converge or diverge?
(16) For which values of x does the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ converge?
(17) Find the first three terms for the power series for $\cos (\sqrt{x})$ centered at $x=1$.
(18) Find the first three terms of the power series centered at 0 for $x^{2} e^{-x^{2}}$.
(19) Bonus question: Consider the function

$$
f(x)=\left\{\begin{array}{ll}
e^{-1 / x} & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array} .\right.
$$

Show that this function is continuous, i.e.

$$
\lim _{x \rightarrow 0} e^{-1 / x}=0
$$

More generally, show that

$$
\lim _{x \rightarrow 0} \frac{e^{-1 / x}}{x^{n}}=0
$$

Show that the n-th derivative of f is given by

$$
f^{(n)}(x)=\left\{\begin{array}{ll}
\frac{p_{n}(x)}{x^{2 n}} e^{-1 / x} & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array},\right.
$$

where $p_{n}(x)$ is a polynomial of degree $n-1$.
(Hint: you can do this by induction, or show the recursive formula $p_{n+1}(x)=$ $\left.x^{2} p_{n}^{\prime}(x)-(2 n x-1) p_{n}(x).\right)$

Deduce that this function is smooth, i.e. infinitely differentiable, but not analytic, i.e. not equal to its Taylor series.

