| recall rules for differentiation.                            | f              | f , (           |
|--------------------------------------------------------------|----------------|-----------------|
| (RF)' = XF'                                                  | z~             | их 1-1          |
|                                                              | ex             | e               |
| (f+g)' = f'+g'                                               | (1h(~)         | (05(x)          |
| (fg)' = f'g + fg'                                            | (05(21)        | - sin(a).       |
| if' af'-fg'                                                  | tau(x)         | 500°×.          |
| $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$          |                |                 |
| chain rule.                                                  |                |                 |
|                                                              | ,              | h -1/2          |
| $\mathcal{L}(x) = \sqrt{x} \qquad q(x)$                      | $=\sqrt{x'}=x$ | 12 g'h) = 1/2 x |
| Example: 1. \( \alpha \) - 1/2 \cdot \( \far{f}(\alpha) \)   | = ex f         | (x) = e x .     |
| $f'(x) = e^{\sqrt{2}} \cdot \frac{1}{2} x^{-1/2} \cdot f(x)$ |                |                 |

Film hear

$$\frac{df}{dx} = f'(q(x)) \cdot g'(x) \leftarrow 7$$

$$u=g(x)$$

" concel fractions"

Examples 
$$\frac{d}{dx}(\sin(x)) = \cos(x) \leftarrow radians$$
.  
 $\left(\sin\left(\frac{\pi x}{180}\right)\right)' = \cos\left(\frac{\pi x}{180}\right) \frac{T}{180}$ .  
 $\left(f(g(x))\right)' = f'(g(x)) \cdot g'(x)$ .  
 $f(x) = \sin(x) \quad f'(x) = \cos(x)$ .  
 $g(x) = \frac{\pi x}{180}$ .

Examples 
$$\frac{d}{dx}(\sin(x)) = \cos(x) \leftarrow radians$$
.  
 $\left(\sin\left(\frac{\pi x}{180}\right)\right)' = \cos\left(\frac{\pi x}{180}\right) \frac{T}{180}$ .  
 $\left(f(g(x))\right)' = f'(g(x)) \cdot g'(x)$ .  
 $f(x) = \sin(x) \quad f'(z) = \cos(x)$ .  
 $g(x) = \frac{\pi x}{180}$ .

Examples () 
$$\frac{d}{dx} \left( \sin^2(x) \right) = 2 \sin(x) \cos(x)$$
.

 $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ 
 $f(x) = x^2 \quad f'(x) = 2x$ 
 $g(x) = \sin(x) \quad g'(x) = \cos(x)$ 
 $\frac{d}{dx} \left( -\cos(x) \right) = -\frac{d}{dx} \left( \cos^2(x) \right) = -2 \cos(x) \cdot (-\sin(x))$ 
 $(f(g(x)))' = f'(g(x)) \cdot g'(x) = 2$ 
 $f(x) = x^2 \quad f'(x) = 2x$ 
 $g(x) = +\cos(x) \quad g'(x) = -\sin(x)$ 
 $(-\cos(x))' = \cos^2 x$ 

Recording F Unpin Video

51431, - 6032 SUN' >1 + LB' >1 = 1. shint = 1-corx < same up to constant (f(g(z)))= f'(g(z)).g'(z). Port ( of drain rule). [f(g(x))] = lim f(g(x+h)) - f(g(x)) h-70 g(x+h)-g(2) f(g(x+h)) - f(g(x)) g (nuch) - g(x) 9 (50)

(im 
$$f(g(x+h)) - f(g(x))$$
 lim  $g(x+h) - g(x)$  (c)  $h \to 0$   $g(x+h) - g(x)$   $h \to 0$   $g'(x)$ .

Let  $k = g(x+h) - g(x)$ .

Let  $f(x) = g(x+h) - g(x)$ .

Lim 
$$f(g(x+h)) - f(g(x))$$
 lim  $g(x+h) - g(x)$  (6)  
how  $g(x+h) - g(x)$  how  $h - g(x)$  (7)  
set  $k = g(x+h) - g(x)$ .  $g'(x)$ .  $g'(x)$ .  
Peny fat: if  $g$  differentiable  $\Rightarrow g$  is continuous.  
so present  $h - g(x) + g(x) + g'(x)$ .  
Impores

 $f(g(x+h)) - g(x) + g'(x)$ 
 $f(g(x)) + g'(x)$ 
 $f(g(x)) + g'(x)$ 
 $f(g(x)) + g'(x)$ 
 $g'(x) = f'(g(x)) + g'(x)$ 
 $g'(x) = g'(x)$ 

Examples
$$\frac{d}{dx}\left(\left(g(x)\right)^{n}\right) = n\left(g(x)\right)^{n-1} \cdot g'(x)$$

$$\frac{d}{dx}\left(\left(g(x)\right)^{n}\right) = e^{g(x)} \cdot g'(x)$$

$$\frac{dx}{dx}\left(f(ax+b)\right) = f'(ax+b).(ax+b)$$

$$= f'(ax+b)a.$$

§ 3.8 Implieit differentiation (N(11) Consider:  $y^4 + xy = x^3 - x + 2$ equation. can't silve for xiy
explicitly easily. this does define a function locally. 3(0) (x, y(x)).

(and do it the way)

pund (x(u),y). locally.

$$y'' + xy = x^{2} - x + 2$$

$$(y(x))' + xy(x) = x^{2} - x + 2$$

$$(x, y(x))'$$
(without in the work of x using chain rule of althout in the work of x using an y(x).

$$(y(x))' + xy(x) = x^{2} - x + 2$$

$$(x, y(x))' + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + y(x) + xy(x) = 3x^{2} - 1$$

$$y'' + xy = x^{2} - x + 2$$

$$(y(x))' + xy(x) = x^{2} - x + 2$$

$$(x, y(x))'$$

$$(x, y(x))' + xy(x) = x^{2} - x + 2$$

$$(x, y(x))' + xy(x) = x^{2} - x + 2$$

$$(x, y(x))' + xy(x) = x^{2} - x + 2$$

$$(x, y(x))' + xy(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) + xy(x) = 3x^{2} - 1$$

$$(y(x))' + y(x) = 3x^{2} - 1$$



Application: derivatives of inverse functions (1)

Example 
$$y = ln(x)$$
  $e^{ln(x)} = x$ 
 $e^{y(x)} = x + implicit diff and x$ 
 $e^{y(x)} = y^{(x)} = 1$ 

$$\frac{y'(x)}{dx} = \frac{1}{e^{y(x)}} = \frac{1}{x}$$

$$\frac{d}{dx}(ch(x)) = \frac{1}{x}$$

The 
$$\frac{d}{dx}\left(\sin^{2}(x)\right) = \frac{1}{\sqrt{1-x^{2}}}$$
  $\frac{d}{dx}\left(\sin^{2}(x)\right) = -1$  (3)

Proof  $\left(\text{of }\sin^{2}(x)\right)$ .

 $y = \sin^{2}(x)$ 
 $\sin(y)^{2} = x \in \text{implied } \text{iff}$ 
 $\sin(y)^{2} = x \in \text{implied } \text{iff}$ 
 $\sin(y)^{2} = x \in \text{implied } \text{iff}$ 
 $\sin(y)^{2} = x \in \text{implied } \text{iff}$ 

D Kaline "



Example 
$$f(x) = (2x^{2} + 8)^{2}$$
  
=  $4x^{4} + 32x^{2} + 64$ .

$$a(x) = x^{2}$$
 $b(x) = 2x^{2} + 8$ 
 $b(x) = 2x + 8$ 
 $c(x) = x^{2}$ 
 $a(b(c(x))) = (2x^{2} + 8)$ 
 $a(b(c(x)))^{2} = a'(b(c(x))) \cdot (b(c(x)))^{2}$ 

464) 17

-(3) 340

$$(a(b(c(x))))^{2} = a'(b(c(x))) \cdot (b(c(x)))' \cdot (B)$$

$$= a'(b(c(x))) \cdot b'(c(x)) \cdot c'(x)$$

$$a(x) = x^{2} \quad a'(x) = 2x$$

$$b(x) = 2x + 8 \quad b'(x) = 2$$

$$c(x) = x^{2} \quad c'(x) = 2x$$

$$2(b(c(x))) \cdot 2 \cdot 2x$$

$$2(b(c(x))) \cdot 2 \cdot 2x$$

$$2(x^{2} + 8) \cdot 4x = 8x(2x^{2} + 8)$$

$$16x^{3} + 64$$

Example 
$$f(x) = (2x^2 + 8)^2$$
  
 $= (2x^2 + 8)^2$   
 $= (4x^4 + 32x^2 + 64)$   
 $= (6x^3 + 64x)$   
 $= (6x^3 + 64x)$ 

D ( Drail

Recording - Unpin Video

$$(a(b(c(x))))^{\frac{1}{2}} = a'(b(c(x))) \cdot (b(c(x)))'(8)$$

$$= a'(b(c(x))) \cdot b'(c(x)) \cdot c'(x) \cdot .$$

$$a(x) = x^{2} \quad a'(x) = 2x$$

$$b(x) = 2x + 8 \quad b'(x) = 2$$

$$c(x) = x^{2} \quad c'(x) = 2x \cdot .$$

$$2(b(a(x))) \cdot 2 \cdot 2x \cdot .$$

$$2(b(a(x))) \cdot 2 \cdot 2x \cdot .$$

$$2(b(a(x))) \cdot 2 \cdot 2x \cdot .$$

$$2(x^{2} + 8) \cdot 4x = 8x \cdot (2x^{2} + 8) \cdot .$$

$$16x^{3} + 64 \cdot .$$

m(5) 14

Example

$$a(x) = x^{1000}$$
  $a'(x) = 1000 x^{999}$ 

$$b(x) = x+1$$
  $b'(x) = 1.$ 

D Kelmin

Solventives of expanentials and logs (20)

recall 
$$f(x) = b^{2}$$
 then  $f'(x) = \mu_{1}b^{2}$ 
 $f(x) = e^{2}$  then  $f'(x) = e^{2}$ .

Then  $f(x) = b^{2}$  then  $f'(x) = \ln(b)$   $b^{2}$ .

Proof  $f(x) = b^{2}$  then  $f'(x) = \ln(b)$ 
 $f(x) = (e^{\ln(b)})^{2} = e^{x \ln(b)}$ 

than  $f'(x) = e^{x \ln(b)}$  (x  $\ln(b)$ )

The proof  $f(x) = e^{x \ln(b)}$  (x  $\ln(b)$ )

 $f(x) = e^{x \ln(b)}$  (x  $\ln(b)$ )





$$f(x) = \log_b(x) = \frac{\ln(x)}{\ln(b)} + \frac{\log}{\ln(b)}$$
where  $\frac{\partial^2}{\partial x^2}$ 

$$\begin{array}{lll}
(\overline{a}) & f(x) = x \ln(x) \\
f'(x) & = (x)' \ln(x) + x \left( \ln(x) \right)' \\
& = 1 \cdot \ln(x) + x \cdot \overline{x} \\
& = \ln(x) + 1
\end{array}$$

(a) is a se

els)

2 + (0)