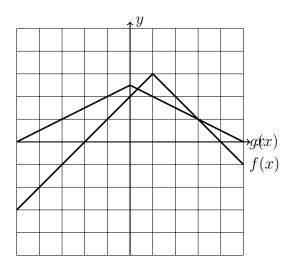

Math 231 Calculus 1 Fall 20 Sample Midterm 2


(1) Consider the function f(x) defined by the following graph.

- (a) Label all regions where f'(x) < 0.
- (b) Label all regions where f'(x) > 0.
- (c) Sketch a graph of f'(x) on the figure.
- (d) What is $\lim_{x\to\infty} f(x)$?
- (e) What is $\lim_{x\to-\infty} f'(x)$?
- (2) Find the derivatives of the following functions $(2) = 5 + 3\pi^3$

(a)
$$x^5 e^{-3x^5}$$

(b) $\frac{\sqrt{2x-1}}{3-\tan(2x)}$
(c) x^{4x}
(d) $\ln(\sec(\sqrt{x}))$
(e) $\tan^{-1}(2/\sqrt[4]{x})$
(f) $\sin^{-1}(3-2x)$

(3) Find the second derivatives of the functions above.

(4) The graphs of the functions f and g are shown below.

- (a) Let h(x) = f(x)g(x) Find h'(3).
- (b) Let h(x) = f(g(x)). Find h'(-1).
- (5) Use implicit differentiation to find the tangent line to the hyperbola $16x^2 3y^2 = 4$ at the point (1, -2).
- (6) Find $\frac{dy}{dx}$ for the implicit function $x^3y + x^2y^2 = \sin(xy)$.
- (7) You inflate a spherical balloon at a rate of 20cm³ per second. How fast is the area of the balloon increasing when the radius is 20cm?
- (8) Use a linear approximation to estimate $\sqrt[3]{26}$. What is the percentage error?
- (9) Find all the critical points for the function $f(x) = e^x(x^2 x 5)$. Use the first derivative test to identify them as local maxima or local minima.
- (10) Find the absolute maximum and minimum of the function $f(x) = x^2 2x 3$ on the interval [-2, 2].