Math 231 Calculus 1 Fall 20 Sample Final

- (1) Differentiate the following functions. Do not simplify your answers. (a) $-2x^5 + 2\sqrt[3]{x^4} + \tan(3x)$
 - (b) $f(x) = \frac{x^2 x}{\ln(2x + 1)}$ (c) $f(x) = e^{-3x} \cos(2 - 3x)$ (d) $f(x) = \sqrt[4]{e^{-\sin(3x)} + 2}$
- (2) Evaluate the following integrals.

(a)
$$\int \frac{1}{x^2} + 3\cos(x) - e^x dx$$

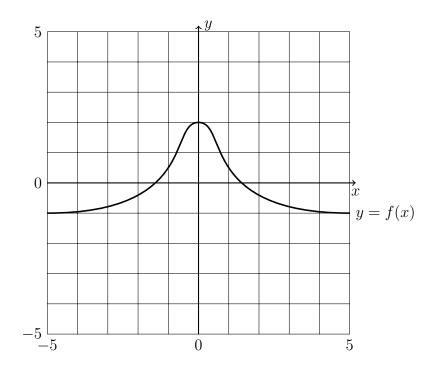
(b) $\int \frac{(1-2x)^2}{\sqrt{x^3}} dx$
(c) $\int_0^{\pi/4} \cos(4x) \sin^3(4x) dx$
(d) $\int \frac{1}{1+4x^2} dx$

(3) Note: the possible answers for limits are a number, $+\infty$, $-\infty$ or "does not exist" (DNE). Justify your answers.

(a) Find
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$
.
(b) Find $\lim_{x \to 0} \frac{1 - e^{3x}}{\cos(5x)}$.
(c) Find $\lim_{x \to 0+} x^{\sin(x)}$.
(d) Find $\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2(x)}$.
(4) Consider $f(x) = x^3 - 12x$.

- (a) Find the derivative of f(x), and find the critical points for f(x).
- (b) Give the interval(s) for which f is increasing.

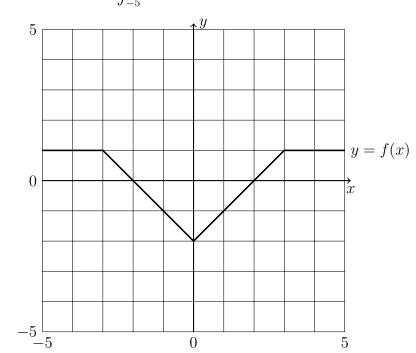
- (c) Give the intervals for which f is concave up, and for which it is concave down.
- (d) Decide which critical points are maxima, minima, or neither.
- (e) Sketch the graph of f(x).
- (5) Consider the function f(x) defined by the following graph.



- (a) Label all regions where f(x) < 0.
- (b) Label all regions where f'(x) > 0.
- (c) Sketch a graph of f'(x) on the figure.
- (6) Consider $f(x) = \frac{2}{x+2}$.
 - (a) Sketch the graph of f(x) showing any asymptotes.
 - (b) Find the slope of the tangent line at x = -1, and write down the equation for the tangent line.
 - (c) Sketch the tangent line at x = -1 on your graph.
- (7) Let $f(x) = x^2 x$. Find the derivative using the limit definition of the derivate. Show all your work.

 $\mathbf{2}$

(8) Use implicit differentiation to find the tangent line to the curve given by the equation $x^3y - xy^4 + 4x = 10$ at the point (-1, 2).



(9) Sketch the graph of $\int_{-5}^{x} f(t)dt$, where f(x) is shown below.

- (10) A region in the plane is bounded by the x-axis, the graph $y = 8 x^2$, and the lines x = -2 and x = 2.
 - (a) Sketch the region (shading it in) and label the boundaries.
 - (b) Find the area of the region.
- (11) You blow up a spherical balloon at the rate of $8in^3/s$. How fast is the surface area growing when r = 6in? (The volume of a sphere is $V = \frac{4}{3}\pi r^3$, and the surface area is $A = 4\pi r^2$.)
- (12) Use linear approximation to estimate $\sqrt[3]{120}$. Use you calculator to find the exact value, and find the absolute and percentage errors.
- (13) You wish to build a running track in the shape of a rectangle with two semicircular ends. If the running rack should have length 1200m, what shape minimizes the area?