Math 505 Introduction to Proofs Spring 19 Sample Midterm 2

- (1) Show that $\sqrt[3]{3}$ is irrational.
- (2) Find an example of a function f: N → N which is
 (a) injective but not surjective
 - (b) neither injective nor surjective
- (3) Find an example of a function $f \colon \mathbb{R} \to \mathbb{R}$ which is
 - (a) surjective but not injective
 - (b) neither injective nor surjective
- (4) Find explicit bijections between the following subintervals of \mathbb{R} .
 - (a) (0, 1) and $(1, \infty)$
 - (b) $(1,\infty)$ and $(0,\infty)$
 - (c) $(0,\infty)$ and \mathbb{R}
 - (d) (0,1) and \mathbb{R}
- (5) Say a set A is *countable* if there is an injective map $f: A \to \mathbb{N}$. Show that the product of countable sets is countable. Show that the set of 2×2 matrices with integer coefficients is countable.
- (6) What do the following statements mean in ordinary language?
 - (a) $(\exists n \in N)(x = 2^n)$
 - (b) $(\forall a, b \in \mathbb{N})(\pi \neq a/b)$
 - (c) $(\forall b \in B) (\exists a \in A) (f(a) \neq b)$
 - (d) $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(n^2 + n = 2m)$
 - (e) $(\exists A \subset \mathbb{R}) (\forall x \in \mathbb{R}) (\exists a \in A) (x < a)$
 - (f) $(\forall n \in \mathbb{N})(\exists p \in \mathbb{N})((p > n) \text{ and } [(\forall q \in \mathbb{N})(q | p \Rightarrow (q = 1) \text{ or } q = p)])$
- (7) State the negation of the following statements, using appropriate quantifiers.
 - (a) e^{π} is rational.
 - (b) The function f is surjective but not injective.
 - (c) The integer n is divisible by a square number.
 - (d) There is a surjective function $f: A \to B$.
 - (e) The function $f \colon \mathbb{R} \to \mathbb{R}$ is bounded above and below.
 - (f) $\lim_{x \to 0} f(x) = 1.$
- (8) Write out careful proofs, or give counterexamples, to the following statements.
 - (a) Show that the product of any three consecutive integers is divisible by6.

- (b) Show that the sum of any three consecutive integers is divisible by 3.
- (c) A function $f: A \to B$ has an inverse if and only if it is both surjective and injective.
- (d) If f is surjective, then $f \circ g$ is surjective.
- (e) If f and $f \circ g$ are injective, then g is injective.
- (f) If $f \circ g \colon \mathbb{R} \to \mathbb{R}$ is increasing, and $g \colon \mathbb{R} \to \mathbb{R}$ is increasing, then f is increasing.
- (g) If $x \in \mathbb{R}$ and $x^2 \ge x$, then $x \ge 1$.
- (9) Let $f: X \to Y$ be a function. If $A \subseteq X$, let f(A) be the image of A in Y. Show that this defines a function from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$. Can you say when it is injective or surjective?
- (10) Suppose that $f: A \to B$ and let $C \subseteq B$.
 - (a) Prove or give a counterexample: $f^{-1}(B-C) \subseteq f^{-1}(B) f^{-1}(C)$
 - (b) Prove or give a counterexample: $f^{-1}(B) f^{-1}(C) \subseteq f^{-1}(B C)$
 - (c) Is there a condition on f that will ensure that $f^{-1}(B C) = f^{-1}(B) f^{-1}(C)$? Explain.
 - (d) Is there a condition on f that will ensure that $f^{-1}(B-C) = A f^{-1}(C)$? Explain.