Math 505 Introduction to Proofs Spring 19 Sample Final

(1) Consider the statement

If x and y are real numbers with x < y then x/y < 1.

Which, if any, of the following substitions gives a counterexample: (a) x = 1, y = 2 (b) x = 2, y = -1 (c) x = -2, y = -1

- (2) State which of the following statements are true, vacuously true, or false.
 (a) (A ∩ B)' = A' ∩ B'
 (b) If P(A) = Ø, then A = Ø
 - (c) $(A \cup B) C = (A C) \cup (B C)$
- (3) Let $f: X \to Y$ be a function, and let A and B be subsets of Y. Show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- (4) Let $f: X \to Y$ be a function, and let A be a subset of Y. Show that $f(f^{-1}(A)) \subset A$. Is $f(f^{-1}(A)) = A$?
- (5) Either give examples of functions with the properties below, or explain why they don't exist.
 - (a) A surjective function from \mathbb{N} to [0,1]
 - (b) A surjective function from $(0, \infty)$ to (0, 1)
 - (c) An injective function from \mathbb{R}^2 to \mathbb{R}
- (6) State the negation of the following statements, using appropriate quantifiers.
 (a) The function f: A → B is injective.
 - (b) There is an injective function $f: A \to B$.
 - (c) The function $f \colon \mathbb{R} \to \mathbb{R}$ is strictly decreasing.
- (7) Write out careful proofs, or give counterexamples, to the following statements.
 (a) If n is an integer then n³ n is even.
 - (b) If q and $q \circ f$ are surjective, then f is surjective.
 - (c) If $f: \mathbb{R} \to \mathbb{R}$ is increasing, and $g: \mathbb{R} \to \mathbb{R}$ is increasing, then f + g is increasing.
- (8) Write out the negation of the statement, " $(\forall x)(p(x))$ or $(\exists x)(\sim q(x))$ ".
- (9) Write out the converse to the statement "If p(x) or q(x) then r(x)".
- (10) Write out the contrapositive to the statement "If p(x) or q(x) then r(x)".

- (11) We say a sequence a_n has a limit L if for all $\epsilon > 0$ there is an N such that $|L a_n| \leq \epsilon$ for all $n \geq N$. Write this statement out using the quantifier symbols, then write out the negation of this statement. Use the negation to show that the sequence $a_n = (-1)^n$ does not have a limit.
- (12) Show that the following numbers are irrational: $\sqrt{2}, \sqrt{3}, \sqrt{6}, \sqrt{2} + \sqrt{3}$.
- (13) Show that $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + (n)(n+1) = \frac{1}{3}n(n+1)(n+2).$
- (14) Show that $n^2 \leq 2^n$ for $n \geq 5$.
- (15) Show that $4^n + 5^n + 6^n$ is divisible by 15 when n is odd.
- (16) Let $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 2x_n}$ for $n \ge 1$. Show that $x_n \le 4$ for all n.
- (17) Show that $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n}$.
- (18) Consider the relation on \mathbb{R} determined by $x \sim y$ if x y is irrational. Is this an equivalence relation?
- (19) Consider the relation on functions $f \colon \mathbb{R} \to \mathbb{R}$ given by $f \sim g$ if there are numbers $A, B \in \mathbb{R}$ such that $f(x) \leq Ag(x) + B$. Is this an equivalence relation?
- (20) Define a relation on sets by $A \sim B$ if there is a bijection between A and B. Is this an equivalence relation on sets? What are the equivalence classes?
- (21) Let F be the set of all functions $f : \mathbb{R} \to \mathbb{R}$. Define a relation on F by $f \sim g$ if g = f'. Is this an equivalence relation? Does it define a function?