Math 505 Introduction to Proofs Spring 18 Sample Midterm 2

- (1) Show that $\sqrt[3]{5}$ is irrational.
- (2) Find an example of a function $f: \mathbb{N} \to \mathbb{N}$ which is
 - (a) injective but not surjective
 - (b) surjective but not injective
- (3) Find an example of a function $f \colon \mathbb{R} \to \mathbb{R}$ which is
 - (a) injective but not surjective
 - (b) surjective but not injective
- (4) Find explicit bijections between the following subintervals of \mathbb{R} .
 - (a) (0, 1) and $(1, \infty)$
 - (b) $(1,\infty)$ and $(0,\infty)$
 - (c) $(0,\infty)$ and \mathbb{R}
 - (d) (0,1) and \mathbb{R}
- (5) Say a set A is *countable* if there is an injective map $f: A \to \mathbb{N}$. Show that the product of countable sets is countable. Show that the set of solutions of linear equations ax + b = 0, with $a, b \in \mathbb{Z}$ is countable. What about solutions of quadratic equations $ax^2 + bx + c = 0$, with $a, b, c \in \mathbb{Z}$?
- (6) Either give examples of functions with the properties below, or explain why they don't exist.
 - (a) An injective function from \mathbb{Z} to \mathbb{R}
 - (b) A surjective function from \mathbb{R} to \mathbb{Z}
 - (c) A surjective function from \mathbb{Z} to \mathbb{R}
 - (d) An injective function from \mathbb{R} to \mathbb{R}^2
 - (e) A surjective function from \mathbb{R}^2 to \mathbb{R}
 - (f) A bijective function from the unit interval [0, 1] to the unit square $[0, 1] \times [0, 1]$.
- (7) State the negation of the following statements, using appropriate quantifiers.
 (a) e^π is rational.
 - (b) The function f is surjective and injective.
 - (c) The integer n is divisible by 2 or 3.
 - (d) There is an injective function $f: A \to B$.
 - (e) The function $f \colon \mathbb{R} \to \mathbb{R}$ is bounded above.
 - (f) $\lim_{x \to 0} f(x) = 0.$

- (8) Write out careful proofs, or give counterexamples, to the following statements.
 - (a) Show that the sum of any two adjacent integers is odd.
 - (b) Show that the sum of any three consecutive integers is divisible by 3.
 - (c) $f: A \to B$ has an inverse if and only if it is both surjective and injective.
 - (d) If f is injective, then $f \circ g$ is injective.
 - (e) If f and $f \circ g$ are surjective, then g is surjective.
 - (f) If $f : \mathbb{R} \to \mathbb{R}$ is increasing, and $g : \mathbb{R} \to \mathbb{R}$ is increasing, then $f \circ g$ is increasing.
 - (g) If $x \in \mathbb{R}$ and $x^2 \leq x$, then $x \leq 1$.
- (9) Suppose that $f: A \to B$ and let $C \subseteq A$.
 - (a) Prove or give a counterexample: $f(A C) \subseteq f(A) f(C)$
 - (b) Prove or give a counterexample: $f(A) f(C) \subseteq f(A C)$
 - (c) What condition on f will ensure that f(A C) = f(A) f(C)? Prove this.
 - (d) What condition on f will ensure that f(A-C) = B f(C)? Prove this.

 $\mathbf{2}$