Math 505 Introduction to Proofs Spring 18 Sample Final

(1) Consider the statement

If x and y are real numbers with x < y then $x^2 < y^2$.

Which, if any, of the following substitions gives a counterexample:

(a)
$$x = 1, y = 2$$

(b)
$$x = 2, y = -1$$

(c)
$$x = -2, y = -1$$

- (2) State which of the following statements are true, vacuously true, or false.
 - (a) $(A \cap B)' = A' \cup B'$
 - (b) If $\mathcal{P}(A) = \emptyset$, then $A = \emptyset$
 - (c) $(A \cup B) C = (A C) \cap (B C)$
- (3) Let $f: X \to Y$ be a function, and let A and B be subsets of X. Show that $f(A \cup B) = f(A) \cup f(B)$.
- (4) Let $f: X \to Y$ be a function, and let A be a subset of Y. Show that $f(f^{-1}(A)) \subset A$. Is $f(f^{-1}(A)) = A$?
- (5) Either give examples of functions with the properties below, or explain why they don't exist.
 - (a) A surjective function from [0,1] to \mathbb{N}
 - (b) A surjective function from (0,1) to $(0,\infty)$
 - (c) An injective function from \mathbb{R}^2 to \mathbb{R}
- (6) State the negation of the following statements, using appropriate quantifiers.
 - (a) The function $f: A \to B$ is surjective.
 - (b) There is a surjective function $f: A \to B$.
 - (c) The function $f: \mathbb{R} \to \mathbb{R}$ is increasing.
- (7) Write out careful proofs, or give counterexamples, to the following statements.
 - (a) If n is an integer then $n^2 + 3n$ is even.
 - (b) If f and $g \circ f$ are injective, then g is injective.
 - (c) If $f: \mathbb{R} \to \mathbb{R}$ is decreasing, and $g: \mathbb{R} \to \mathbb{R}$ is decreasing, then f + g is decreasing.
- (8) Write out the converse to the statement "If p(x) and q(x) then r(x)".
- (9) Write out the contrapositive to the statement "If p(x) and q(x) then r(x)".
- (10) We say a sequence a_n has a limit L if for all $\epsilon > 0$ there is an N such that $|L a_n| \leq \epsilon$ for all $n \geq N$. Write this statement out using the quantifier

symbols, then write out the negation of this statement. Use the negation to show that the sequence $a_n = (-1)^n$ does not have a limit.

- (11) Show that the following numbers are irrational: $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6}$, $\sqrt{2} + \sqrt{3}$.
- (12) Show that $1 + 4 + 7 + \dots + (3n 2) = \frac{1}{2}n(3n 2)$.
- (13) Show that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all $n \ge 0$.
- (14) Let F_k be the k-th Fibonacci number. Show that $F_1F_2 + F_2F_3 + \cdots + F_{2n-1}F_{2n} = F_{2n}^2$.
- (15) Show that $\sum_{i=1}^{n} i2^{i} = (n-1)2^{n+1} + 2$.
- (16) Consider the relation on \mathbb{R} determined by $x \sim y$ if x y is rational. Is this an equivalence relation?
- (17) Consider the relation on functions $f: \mathbb{R} \to \mathbb{R}$ given by $f \sim g$ if there is a number $c \in \mathbb{R}$ such that f(x) = g(x) + c. Is this an equivalence relation?
- (18) Define a relation on sets by $A \sim B$ if there is a bijection between A and B. Is this an equivalence relation on sets? What are the equivalence classes?
- (19) Let F be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Define a relation on F by $f \sim g$ if g = f'. Is this an equivalence relation? Does it define a function?