Math 231 Calculus 1 Fall 18 Final b

Name:	Solutions	

- I will count your best 10 of the following 12 questions.
- ullet You may use a calculator without CAS capabilities, and a 3 \times 5 index card of notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
	100	

Final
Overall

(1) (10 points) Find the derivative of the following functions. (a) $x^3 + 3x - 4\sqrt{x}$

$$3x^{2}+3-2x^{-1/2}$$

1 will count your best 10 of the following 12 questions.
 You may use a calculator without CAS capabilities, and a 3 × 5 index card of notes.

(1) -2 -:- (-)	
(b) $x^2 \sin(x)$	
2x sin(x) + x2 cs(x)	

Final Overall

- (2) (10 points) Find the derivative of the following functions. (a) $\frac{x}{3+\sqrt{x}}$

 $(3+\sqrt{2})^2$ $(3+\sqrt{2})^2$

(b) $\tan^{-1}(2x)$

(3) (10 points) Find the derivative of the following functions.

(a) $\ln(\sqrt{\tan(x)})$

$$\frac{1}{\sqrt{\tan(2)}} \cdot \frac{1}{2} \left(\tan(\pi) \right) \cdot \sec^2 x$$

(b) $xy + y^2 = \cos(x)$ (Use implicit differentiation to find y' implicitly.)

$$y + xy' + 2yy' = -\sin(x)$$

$$y' = \frac{-\sin(x) - y}{x + 2y}$$

- (4) (10 points) Definition of the derivative as a limit.
 - (a) State the definition of f'(x) as a limit.
 - (b) Use the limit definition of the derivative to find the derivative of f(x) = 1/x. Do *not* use L'Hôpital's rule.

$$f'(x) = h \rightarrow 0 \qquad \frac{f(x+h) - f(x)}{h}$$

lim
$$\frac{1}{h\rightarrow 0}$$
 = $\frac{1}{h\rightarrow 0}$ =

(e) Sketch the graph of f(x), and the tangent line at x = 1.

(5) (10 points) Consider $f(x) = x^4 - 18x^2 - 4$. To make the Consider $f(x) = x^4 - 18x^2 - 4$.

(a) Find the derivative for f(x), and the critical points.

$$f'(n) = 4x^3 - 36x = 4x(x^2 - 9) = 0 x = 0, \pm 3.$$

(b) Find the equation of the tangent line at x = 1.

$$f'(\frac{1}{7}) = 4-36 = -32$$
 $y+21 = -32(\pi-1)$ $f(1) = 1-19-4 = -21$

(c) Find the intervals for which f(x) is increasing.

$$(-3,0) \cup (3,\infty)$$
 $(-3,0) \cup (3,\infty)$
 $(-3,0) \cup (3,\infty)$
 $(-3,0) \cup (3,\infty)$
 $(-3,0) \cup (3,\infty)$

$$f''(x) = 12x^2 - 36 = 12(x^2 - 3) = 0 x = \pm \sqrt{3}$$
. $(-\infty, -\sqrt{3}) \cup (\sqrt{3}, -\infty)$

(e) Sketch the graph of f(x), and the tangent line at x = 1.

(6) (10 points) A hot air ballon rises vertically upwards from a distance of 200m away. If the angle θ at which you see the balloon is increasing at the rate of 0.1 radians/second, how fast is the balloon rising when $\theta = \pi/6$?

$$tan0 = \frac{h}{200}$$

$$\frac{dh}{dt} = \frac{200.0.1}{600^{2}(7/6)} = \frac{20}{3/4} = \frac{80}{3}$$

(7) (10 points) Note: the possible answers for limits are a number, $+\infty$, $-\infty$ or "does not exist" (DNE). Justify your answers.

(a) Find
$$\lim_{x\to 3} \frac{x^2 - 2x - 3}{x^2 - x - 6}$$
. $\lim_{x\to 3} \frac{2x - 2}{2x - 1} = \frac{4}{5}$

(b) Find
$$\lim_{x\to 0} \frac{\sin 5x}{3x} = \lim_{x\to 0} \frac{5\cos 5x}{3} = \frac{5}{3}$$

(c) Find
$$\lim_{x\to +\infty} \frac{x^2+x}{e^{3x}}$$
. $\lim_{x\to \infty} \frac{2x+1}{3e^{3x}} = \lim_{x\to \infty} \frac{2}{3e^{3x}} = 0$.

(8) (10 points) Evaluate the following integrals.

(a)
$$\int \left(x^4 + \sqrt[3]{x} + \frac{4}{x} - 3 \right) dx$$

41 $\frac{1}{5}x + \frac{3}{4}x + 4\ln|x| - 3x + c$

(b)
$$\int_0^{\pi/8} \cos 4x \, dx = \begin{bmatrix} \frac{1}{4} \sin (4x) \end{bmatrix}_0^{\pi/8}$$

= $\frac{1}{4} \sin (\pi/2) - \frac{1}{4} \sin (\alpha) = \frac{1}{4}$.

(9) (10 points) Evaluate the following integrals.

$$(a) \int x \cos(x^{2}) dx \qquad u = x^{2}$$

$$\frac{du}{dx} = 2x$$

$$\int x \cos(u) \frac{dx}{du} du = \int x \cos(u) \frac{1}{2x} du = \frac{1}{2} \int \cos(u) du$$

$$= \frac{1}{2} \sin(u) + c = \frac{1}{2} \sin(x^{2}) + c$$

(b) If
$$\int_0^5 f(x) dx = 12$$
 and $\int_2^5 f(x) dx = 5$, find $\int_0^2 f(x) dx$.

$$\int_0^5 f(x) dx = \int_0^5 f(x) dx - \int_1^5 f(n) dx = 12-5 = 7$$

(10) (10 points) Consider the function f(x) determined by the graph below.

- (a) Label the roots of f(x) on the graph above.
- (b) On the graph above, sketch the tangent line at x = 1.

- (c) List all the critical points of f(x). -2,2
 (d) Sketch y = f'(x) on the right hand graph.
 (e) Estimate the intervals where f(x) is concave up.

(11) (10 points) Find the area below the graph $f(x) = 9 - x^2$ which lies in the first quadrant.

(a) Label the roots of f(x) on the graph above.

(c) List all the critical points of f(x). = 1, 1
 (d) Sketch v = f(x) on the right band grant

(e) Estimate the intervals where f(x) is concave up. $(-5, \phi)$

(12) (10 points) You wish to fence off a rectangular field beside a river and want the area A to be 200 square feet. Using the river as one side, you only need fencing for the other three sides, as shown below. Find the width W and length L that will minimize the fence length.

$$\frac{dP}{d\omega} = -\frac{200}{\omega^2} + 2 = 0$$