Conte, Spring 15 12'15pts 2-8 12 pts

FINAL EXAM A

MATH 233

- 1. Given the vectors $\mathbf{u}=(2,1,-2)$ $\mathbf{v}=(0,1,1)$ and $\mathbf{w}=(4,0,-2)$ answer each of the following
- a) Simplify the linear combination $3\mathbf{u}\text{-}\mathbf{v}\text{-}5\mathbf{w}$

b) Find the vector of length 5 in the opposite direction of \mathbf{w}

c) Find the volume of the parallelpiped spanned by the 3 vectors

- 2. For the vector valued function $\mathbf{r}(t) = (\cos 4t, \sin 4t, 9t)$ answer each of the following:
- a) The equation of the tangent line to the curve at the point determined by $t=\pi/2$.

b) Find the arc-length parametrization of the curve.

3. Find the equation of the tangent plan to the surface parametrized by $\Phi(u,v)=(9u^2-4v^2,3u+2v,3u-2v)$ at (2,1) (use the back of the page)

- 4. Let $\mathbf{F} = (2x \ln y + e^z, \frac{x^2}{y}, xe^z)$ and $V(x, y, z) = x^2 \ln y + xe^z$
- a) Verify that $\mathbf{F} = \nabla V$

b) Evaluate the line integral of $\mathbb F$ over the path $c(t)=(t+1,e^t,t^2)$ for $0\leq t\leq 2$

5. Use the Divergence Theorem to evaluate the surface integral

$$\int \int F \cdot dS$$

Where S is the boundary of the cube $0 \le x, y, z \le 6$ and $\mathbf{F} = (z^2, 3y, z^3)$ (Use the back of the page)

6. Use Green's Theorem to compute the line integral $\int_C \mathbf{F} \cdot \mathbf{ds}$ where $\mathbf{F} = (2xy, x + 10)$ where C is the boundary of the triangle with vertices (0,0), (5,0) and (5,3).

7. Evaluate the integral of the function $f(x,y,z)=xy^2-z$ over the region $1\leq x^2+y^2\leq 4$, $x\geq 0, 0\leq z\leq 4$ (Hint: use cylindrical coordinates!).

8. Find the critical point of $f(x,y) = \frac{1}{4}x^4 + 8x + e^{y^2-10y}$. Use the 2nd derivative test to determine what kind or if the test is inconclusive.