1.a) Find the volume of the parallel opiped spanned by the vectors ${\bf u}{=}2{\bf i}{-}3{\bf j}{+}{\bf k}$ and ${\bf v}{=}$ -4 ${\bf i}{+}{\bf j}$ and ${\bf w}{=}{-}3{\bf i}{+}{\bf k}$

b) What is the angle between $\mathbf{u}\mathbf{x}\mathbf{v}$ and \mathbf{w} ?

- 2. Let $r(t)=(3\sin t,3\cos t,10-\frac{1}{2}t^2)$ give the position of a particle as a function of time and answer each of the following:
- a) The velocity $\mathbf{v}(t)$?

b) The acceleration $\mathbf{a}(t)$?

c) The projection of the acceleration in the direction of the velocity $\mathbf{a}(t)_T$

- 3. Let $\phi(x, y, z) = z^2 \ln xy$
- a) Find the vector field $\mathbf{F} = \nabla \phi$.

b) Compute the curl of $\mathbf{F}: \! \nabla X \mathbf{F}$

c) Compute the line integral of ${\bf F}$ over any path starting at the point (1,1,2) and ending at the point (e,e,4).

4. Let $\mathbf{F}(x,y,z)=(3x,xz-5,zx)$ and let S be the surface of rectangular box $0 \le x \le 4, \ 0 \le y \le 4$ and $0 \le z \le 3$. Compute:

$$\int_S \mathbf{F} \cdot \mathbf{dS}$$

Hint:Use the divergence theorem

5. Use Green's Theorem to compute $\int_C 5 \cos x \, dx + xy \, dy$ where C is the the curve that bounds the region between $y = \frac{1}{2}x$ and $y = \sqrt{x}$. Sketch the region.

- 6. Let $\Phi(u,v)=(u\cos v,u\sin v,v)$. Answer each of the following:
- a) Find $T_u = \frac{\partial \Phi}{\partial u}$ and $T_v = \frac{\partial \Phi}{\partial v}$

b) Find n at the point $(3,0,2\pi)$. Hint $\Phi(3,2\pi)=(3,0,2\pi)$

c) Give the equation of the tangent plane at $(3,0,2\pi)$

7. Find the criticals point of $f(x,y) = x^2 - 5x - 3y^2 + 4y - 22$ and apply the second derivative test to determine what kind.

7...continued

8. Integrate f(x,y,z)=x+2z over the region bounded by $0\leq x^2+y^2\leq 3$ and $-2\leq z\leq 4$. (Hint use cylindrical coordinates).