Review questions

(some of these are hard)

- 1. Write down the infima and suprema of the following sets. In each case, state whether the inf and sup are minimum or maximum values.
 - (a) $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\};$ (b) $\{\frac{3n}{4n+1} : n \in \mathbb{N}\};$ (c) $\mathbb{Q} \cap (0, 1);$ (d) $\{x \in \mathbb{Q} : x^2 < 7\};$ (e) $\{\sin n : n \in \mathbb{Z}^+\}$
- 2. In the following, X and Y are nonempty sets of real numbers. Using the definition of sup, prove that
 - (a) $\sup\{\frac{3n-1}{4n} : n \in \mathbb{Z}^+\} = \frac{3}{4}$
 - (b) $\sup\{\cos\frac{1}{n} + (-1)^n : n \in \mathbb{Z}^+\} = 2$
 - (c) $\sup(X \cup Y) = \max\{\sup X, \sup Y\}$
 - (d) Let a > 0. Then $\sup(aS) = a \sup(S)$, where $aS = \{ax : x \in S\}$
 - (e) $\sup(X + Y) = \sup X + \sup Y$, where $X + Y = \{x + y : x \in X, y \in Y\}$
 - (f) Find a counterexample to show that $\sup(XY) = \sup X \sup Y$ is generally false, where $XY = \{xy : x \in X, y \in Y\}$
- 3. Let f(x) and g(x) be functions : $\mathbb{R} \to \mathbb{R}$. Suppose that $f(x) \le g(x) \ \forall x \in [a, b]$. Prove that $\sup\{f(x) : x \in [a, b]\} \le \sup\{g(x) : x \in [a, b]\}$
- 4. Find the following limits and prove your result:

(a)
$$\lim_{n \to \infty} \frac{n}{3n+4}$$
; (b) $\lim_{n \to \infty} \sqrt{(n^2+6n)} - n$; (c) $\lim_{n \to \infty} \frac{2n+\sin n}{n+2}$

- 5. Show that the sequence $\left\{\frac{2n+1}{n}\right\}$ does not converge to 1.
- 6. Give an example of a bounded sequence that does not converge.
- 7. Suppose $\{s_n\}$ and $\{t_n\}$ are sequences such that $\{s_n\}$ and $\{s_n + t_n\}$ converge. Prove that $\{t_n\}$ converges.
- 8. Let $x_n \to x$ and $y_n \to y$. Show from the definition of convergence that $3x_n 2y_n \to 3x 2y$
- 9. Let x_n be a bounded sequence and let $y_n \to 0$. Show that $x_n y_n \to 0$.
- 10. Prove that if $x_n \to x$, then $|x_n| \to |x|$.
- 11. Show that if x_n is a convergent sequence, then $x_{n+1} x_n \to 0$. Is the converse true? Prove or disprove.
- 12. Suppose that $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ and $\lim_{n\to\infty} b_n = 0$ where $b_n \neq 0$ for all $n \in \mathbb{N}$. Find $\lim_{n\to\infty} a_n$.
- 13. Consider the sequences $\{a_n\}$ and $\{b_n\}$, where $\{a_n\} \to 0$. Must $\{a_nb_n\} \to 0$? Prove or disprove.
- 14. Consider the sequence $\{a_n\}$, where $a_n = \frac{1}{4n^2 1}$. Define the sequence $\{s_n\}$ by $s_n = a_1 + a_2 + \dots + a_n$. Determine whether or not $\{s_n\}$ converges. If so, find the limit.
- 15. Is it possible to have an unbounded sequence $\{a_n\}$ so that $\lim_{n\to\infty} \frac{a_n}{n} = 0$? Explain.
- 16. Consider the sequences $\{a_n\}$ and $\{b_n\}$, where $b_n = \frac{a_n + 1}{a_n 1}$. If $\{b_n\} \to 0$, prove that $\{a_n\} \to -1$.
- 17. If the sequence $\{a_n\} \to +\infty$, and α, β , and k are positive constants, prove that $\frac{\alpha a_n}{k + \beta b_n} \to \frac{\alpha}{\beta}$.
- 18. Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences of positive terms such that $\{\frac{a_n}{b_n}\} \to 0$. Prove that if $\{a_n\} \to +\infty$, then so does b_n .
- 19. Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences of positive terms such that $\{\frac{a_n}{b_n}\} \to 0$. Prove that if $\{b_n\}$ is bounded, then $a_n \to 0$.
- 20. Prove that the sequence $a_n = \sin(\frac{n\pi}{2})$ diverges, and find all the subsequential limits.

- 21. Let the sequence $\{a_n\}$ be defined by $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$. Prove that $\{a_n\}$ is unbounded by showing that there exists some subsequence that is unbounded.
- 22. Let $\{s_n\}$ be a sequence of real numbers. Suppose that $\liminf_{n\to\infty} s_n = +\infty$. Show that $\lim_{n\to\infty} s_n = +\infty$.
- 23. Show directly from the definition of convergence that $\lim_{n\to\infty} \frac{4n^2}{3n^2+1} = \frac{4}{3}$
- 24. Show that the intersection of a finite number of open subsets of \mathbb{R} is open.
- 25. Suppose that $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in \mathbb{R} . Recall that for all $x, y \in \mathbb{R}$, d(x, y) = |x y| is the distance between x and y. Prove that $\{d(p_n, q_n)\}$ is a convergent sequence using the following outline:
 - (a) Show that $d(x_1, y_1) \leq d(x_1, x_2) + d(x_2, y_2) + d(y_2, y_1)$ for all $x_1, x_2, y_1, y_2 \in \mathbb{R}$
 - (b) Use part (a) to demonstrate that $|d(p_n, q_n) d(p_m, q_m)| \le d(q_m, q_n) + d(p_n, p_m)$
 - (c) Deduce that $\{d(p_n, q_n)\}$ is a Cauchy sequence
 - (d) Conclude that $\{d(p_n, q_n)\}$ must converge.

Answer with a single proof (or a couple of Lemmas + main proof) rather than just answers to the parts.

- 26. Prove directly that if $\{s_n\}$ and $\{t_n\}$ are Cauchy, so is $\{s_nt_n\}$ (do not use: in the reals, Cauchy \Leftrightarrow convergent).
- 27. Give an example of a set with exactly 2 accumulation points.
- 28. Let S be a nonempty set of reals that is bounded above, and let $x = \sup S$. Prove that either x belongs to S or x is an accumulation point of S.
- 29. Show that the sequence defined by $a_1 = 1$ and $a_{n+1} = \frac{1}{3}(a_n + 1)$ for n > 1 is convergent, and find the limit.
- 30. Prove that every set of the form $\{x : a < x < b\}$ is open and every set of the form $\{x : a \le x \le b\}$ is closed
- 31. If $E \subseteq \mathbb{R}$ is bounded, prove that \overline{E} is bounded.
- 32. Let $E \subseteq \mathbb{R}$. Prove that int(E) is open, and that if S is any open set contained in E, then $S \subseteq int(E)$.
- 33. Define $f: (-2,0) \to \mathbb{R}$ by $f(x) = \frac{x^2 4}{x+2}$. Prove that f has a limit at -2, and find it.
- 34. Give an example of a function $f: (0,1) \to \mathbb{R}$ that is bounded and has a limit at every point except $x_0 = 1$. Use the definition to justify the example.
- 35. Define $f: (0,1) \to \mathbb{R}$ by $f(x) = \cos(\frac{1}{x})$. Does f have a limit at 0? Justify.
- 36. Define $f: (0,1) \to \mathbb{R}$ by $f(x) = x \cos(\frac{1}{x})$. Does f have a limit at 0? Justify.
- 37. Show using the $(\epsilon \delta)$ -definition that f(x) = 2x + 5 is continuous at x = 2.
- 38. Show using the $(\epsilon \delta)$ -definition that $f(x) = \frac{1}{x+1}$ is continuous at x = 1.
- 39. Show using the $(\epsilon \delta)$ -definition that $f(x) = \sqrt{x}$ is continuous on $(0, \infty)$.
- 40. Show using the $(\epsilon \delta)$ -definition that f(x) = mx + b is continuous on \mathbb{R} .
- 41. Show that if f is continuous at x_0 then |f| is continuous at x_0 , in three ways: directly from the definition; using sequences, using composition of functions.
- 42. If |f| is continuous is f continuous?
- 43. Use the definition of the derivative to find the derivative of $f(x) = x^2 + 2$ at x = 3.
- 44. Use the definition of the derivative to find the derivative of f(x) = 1/x.
- 45. Use the definition of the derivative to find the derivative of $f(x) = \sqrt{x}$.
- 46. Show that f(x) = |x| is not differentiable at x = 0.
- 47. Is f(x) = x|x| continuous at x = 0? Is it differentiable at x = 0?