MTH 341 SUMMER 2009

FINAL EXAM

Solve 9 OUT OF 10 problems. Place all solutions in the exam book. Show all work!

- 1. Use the ϵ, δ definition to prove that $\lim_{x\to 2}(x^2+1)=5$.
- 2. Find a function F(x) such that $F'(x) = e^{-x^2}$.
- 3. State and prove the Mean-Value Theorem.
- 4. Use the Mean-Value Theorem to prove that $\sin x < x$, for x > 0
- 5. Show directly that $\lim_{n\to\infty} \left(\frac{n+1}{2n^2+1}\right) = 0$.
- 6. Consider the set $A = \left\{1 \frac{1}{n} : n \in \mathbb{N}\right\}$. Show in detail that $\sup(A) = 1$.
- 7. Prove that the recursive sequence defined by $x_1 = 1$, and $x_{n+1} = \frac{2x_n + 3}{4}$ for $n \ge 2$, converges and find its limit.
- 8. Use the limit definition of the integral to prove that $\int_0^1 2x dx = 1$.
- 9. State both forms of the Archimedean Property.
- 10. Use the ϵ , δ definition to prove that f(x) = mx + b, where $m \neq 0$ and b are real constants, is continuous everywhere.