College of Staten Island
Mathematics Department
Math 130 Section 8962
Final Exam
Fall 2012

NAME (please print) :	tagina diminon sua
Signature:	
Do all problems. Show all work, not just the final result, for full credit	

Problem	Possible	Points
Number	Points	Earned
1	4	
2	6	
3	6	
4	4	
5	8	
6	6	
7	5	
8	5	A Laboratoria
9	6	
10	5	
11	5	
12	5	
13	5	
14	5	
15	5	- Pat = {
16	5	Transfer (%)
17	5	
18	5	
19	5	
Total	100	

College of Staten Island Mathematics Department Math 130 Section 8962 Final Exam Fall 2012

1.
$$g(x) = \frac{\sqrt{2+x}}{3-x}$$

Find the domain of g(x)

2a. Find
$$f(g(h(x)))$$

 $f(x) = x - 1 g(x) = \sqrt{x}$

$$h(x) = x - 1$$

b. Express the function in the form:
$$h(x) = f(g(x))$$

 $H(x) = (x^2 - 9)^{37}$

$$f(x) =$$

$$g(x) =$$

3. A quadratic function is given:
$$f(x) = 3x^2 - 12x + 13$$

a) Express the quadratic function in standard form

- b) Find its vertex and its y intercept
- c) Sketch its graph

5. Find the intercepts and asymptotes and then sketch a graph of the rational function $f(x) = \frac{3x+6}{x^2+2x-8}$

6. Find the amplitude, period, phase shift, and graph one complete period: $y = 2 \cos(\frac{x}{2} + \frac{\pi}{4})$

7. Find the inverse of f: $f(x) = \frac{1+3x}{5-2x}$

$$f(x) = \frac{1+3x}{5-2x}$$

Use an addition or subtraction formula to write the expression as a trigonometric function of 8. one number, and then find its exact value.

$$\cos(\frac{13\pi}{15}) \cdot \cos(\frac{-\pi}{5}) - \sin(\frac{13\pi}{15}) \cdot \sin(\frac{-\pi}{5})$$

Evaluate: 9.

a)
$$tan^{-1}(tan\frac{2\pi}{3})$$

b)
$$\cos(\sin^{-1}\frac{\sqrt{3}}{2})$$

Verify (prove) the identity: $\frac{\sin \theta - csc\theta}{cos\theta - cot\theta} = \frac{cos\theta}{1 - sin\theta}$ 10.

11. Solve $\triangle ABC$.

Find: side c (3 decimal places), <A (1 decimal place), <B (1 decimal place)

- 12. Find a function that models the simple harmonic motion having the given properties:
 - a. Amplitude = 1.2 m , freq = 0.5 Hz (Assume the displacement is zero at time t = 0)

b. Amplitude = 35 cm, period = 8s (Assume that the displacement is at its maximum at time t = 0)

13. Consider the equation: $2sin^2x - cos x = 1$. Find the solutions in the interval $[0, 2\pi)$

- 14. Solve each of the following equations using a graphing calculator. Approximate solutions in $[0, 2\pi)$ to two decimal places.
 - a) $x^2 1.5 = \cos x$

b) $\sin x - \cos x = \cot x$

15.

a) sin A = _____

cos A= _____

b) sin 2A

c) cos 2A

d) tan 2A

16. Write $f(x) = 5 \sin x + 8 \cos x$ in the form $f(x) = k \sin (x + \varphi)$

17. You are given that $\cos A = \frac{-2}{3}$ and A is in quadrant II $\sin B = \frac{1}{2}$ and B is in quadrant I

Find exactly each of the following, leaving your answers as fractions and not computing irrational square roots.

- a) sin A =
- b) cos B =
- c) cos (A+B) =
- d) $\sin \frac{A}{2}$
- e) $\tan \frac{A}{2}$

18. Find the exact value of the product: $\cos 37.5^{\circ} \cdot x \cos 7.5^{\circ}$ (Hint:Use Product-to-Sum Formula)

19. A polynomial P is given; $P(x) = 4x^4 + 2x^3 - 2x^2 - 3x - 1$ Find all zeros of P, real and complex. A pulynomial P is given: P(x) = 4x* + 2x* - 2x* - 3x - Find all zeros of P, real and complex.