Math 130 Precalculus Fall 14 Midterm 2a

Name: Solutions

- \bullet I will count your best 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
	80	

7	
Midterm 2	
Overall	

(1) (10 points) Find the minimum value of the function $f(x) = x - 3 - 2x^2$ by completing the square.

$$-2\pi^{2} + x - 3 = -2\left(\pi^{2} - \frac{1}{2}x\right) - 3$$

$$= -2\left(\left(\pi - \frac{1}{4}\right)^{2} - \frac{1}{16}\right) - 3 = -2\left(\pi - \frac{1}{4}\right)^{2} + \frac{1}{8} - 3$$

$$= -2\left(\pi^{2} - \frac{1}{2}x + \frac{1}{16} - \frac{1}{16}\right) - 3$$

max value is
$$-3+\frac{1}{8}=-\frac{23}{268}$$

(2) (10 points) Sketch the graph of the function $f(x) = \frac{(x-1)^2}{x^2 + 3x + 2}$. Include the x- and y-intercepts, and the vertical and horizontal astymptotes.

y interest: $f(0) = \frac{(-1)^2}{2} = \frac{1}{2}$

x-interepts: $(x-1)^2 = 0 \Rightarrow x = 1$

vertical asymptotis: $x^2+3x+2=(x+2)(x+1)$ x=-2, n=-1

havisantal asymptote: $\frac{\chi^2}{\chi^2} = 1$

sign:

(3) (10 points) Let z = 3 - 2i and let w = -2 + i. Write the following complex numbers in the form a + bi, where a and b are real numbers.

(a)
$$w-2z$$

 $-2+i-2(3-2i) = -2-6+i+4i$
 $= -8+5i$

(b)
$$zw$$
 (3-2i) (-2+i) = -6+3i+4i+2
= -4+7i

$$\frac{(c) w/z}{(3-2i)} \frac{(-2+i)(3+2i)}{(3+2i)} = \frac{-6-4i+3i-2}{9+4}$$

$$= \frac{-8}{13} - \frac{1}{13}i$$

(4) (10 points) Sketch the graph of $f(x) = \ln(x-3) + 1$, including any vertical or horizontal or vertical asymptotes the graph has, if any.

(5) (10 points) Find all roots of the polynomial $x^6 - x^4 - 6x^2$, and state their multiplicities.

$$\chi^{2}(\chi^{4} - \chi^{2} - 6) = \chi^{2}(\chi^{2} - 3)(\chi^{2} + 2)$$

$$= \chi^{2}(\chi - \sqrt{3})(\chi + \sqrt{3})(\chi - \sqrt{2}i)(\chi + \sqrt{2}i)$$

not	multiplialy
0	2
G	
-1/3	l
Vii	1
-v2 i	1

(6) (10 points) Use the quadratic formula to find all roots of $f(x) = 3x^2 + 4x + 6$, expressing them in the form a + bi, where a and b are real numbers.

$$x = \frac{-4 \pm \sqrt{16 - 4x \cdot 3x \cdot 6}}{6}$$

$$x = -\frac{4 \pm \sqrt{16 - 4x \cdot 3x \cdot 6}}{6}$$

$$x = -\frac{4 \pm \sqrt{16 - 72}}{6}$$

$$x = -\frac{2}{3} + \frac{\sqrt{147}}{6}, -\frac{2}{3} - \frac{\sqrt{147}}{6}$$

$$= -\frac{2}{3} + \frac{\sqrt{147}}{3}, -\frac{2}{3} - \frac{\sqrt{147}}{3}$$

- (7) (10 points) Use the log rules to:
 - (a) Evaluate $\log_4(16)$.

2

(b) Expand
$$\ln(x^2/\sqrt{y})$$
. = $\ln(x^2) - \ln(\sqrt{y})$
= $2\ln(x) - \frac{1}{2}\ln(y)$

(c) Combine $\log_2(x+1) - \frac{1}{3}\log(x+2)$ as a single logarithm.

$$\log_2(x+1) - \log_2(\sqrt[3]{x+1})$$

$$= \log_2\left(\frac{x+1}{\sqrt[3]{x+1}}\right)$$

(8) (10 points) Solve the following equations.

(a)
$$e^{2x+3} = 4$$

$$2x+3 = ln(4)$$

$$2x = ln(4) - 3$$

$$x = \frac{1}{2}ln(4) - \frac{3}{2}$$

(b)
$$\log_4(x+7) - \log_4(x-1) = 2$$

$$\log_4\left(\frac{x+7}{x-1}\right) = 2$$

$$\frac{x+7}{x-1} = 4^2 = 16$$

$$x+7 = 16x-16$$

$$23 = 15x$$

$$x = \frac{23}{15}$$

- (9) (10 points) You put \$500 in a bank account with 6% interest per year.
 - (a) If the interest is compounded monthly, how much will you have after 4 years?

$$P(1+\frac{\Gamma}{n})^{nt}$$
 500 $(1+\frac{0.06}{12})^{12\times4}$ ≈ 635.24

(b) If the interest is compounded continously, how much will you have after 4 years?

(10) (10 points) You put \$500 in a bank account with 6% interest per year. If interested is compounded continuously, how long will it be before you have \$800?

Pert
$$500 e^{0.06t} = 800$$

$$e^{0.06t} = \frac{8}{5}$$

$$0.06t = \ln(8/5)$$

$$t = \ln(8/5) \approx 7.83 \text{ years}$$